Practice Exam 5 (Engineers)

Question 1

The grouped frequency table below shows the number of mobile phones sold per day in a city centre store during a period of 200 working days.

Number of phones sold	Frequency
66 - 80	20
81-85	30
86 - 90	55
91-95	50
96-100	35
101-115	10

(i)	Calculate the mean number of mobile phones sold per day.	[4]
(ii)	Draw the cumulative frequency curve for the data.	[5]
(iii)	Using the cumulative frequency curve, explain how to obtain the median of the data	
	and find its value.	[3]
(iv)	Find the interquartile range of the data.	[3]

Question 2

The functions f and g are defined as follows:

$f(x) = \sin(\pi x)$	0 < x < 2
$g(x) = 1 + x^2$	$x \ge 0$

(i) Write down the range of f(x).

Solve the equation $f(x) = \frac{1}{2}$. Explain why the function f does not have an inverse. [4] (ii) The inverse of g is g^{-1} . Find $g^{-1}(x)$.

Write down the domain of $g^{-1}(x)$.

(iii) Show that
$$g(f(x)) = \frac{3 - \cos(2\pi x)}{2}$$
. [5]

[3]

(iv) Sketch the graph of
$$g(f(x))$$
. [3]

Question 3

(a) Differentiate $e^x \ln x$ with respect to x.

(b) Find the stationary value (turning point) of $y = e^{-x} \cos x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$, and decide if this is a maximum or a minimum. [7]

(c) Find the equation of the normal to the curve
$$y = (2x-3)^3$$

at the point (2,1). [6]

Question 4

(a) Use the substitution
$$u = \ln x$$
 to evaluate $\int_{e}^{e^2} \frac{1}{x(\ln x)^2} dx$. [6]

(b)Let
$$f(x) = x(3-x)$$
.[2](i)Sketch the curve $y = f(x)$ where $y \ge 0$.[3](ii)Find the area under this curve in this region.[3](iii)The area is rotated completely about the x-axis.

Question 5

(a) (i) Express
$$\frac{x+5}{(x^2-1)(x+2)}$$
 as a sum of partial fractions. [4]

(ii) Hence evaluate

$$\int_{2}^{4} \frac{x+5}{(x^2-1)(x+2)} dx.$$
 [6]

(b) Use integration by parts to find the exact value of
$$\int_{0}^{\pi/2} \sin x dx.$$
 [5]

Question 6

(i)	Show that the equation $\cos x = x$ has a root between 0.7 and 0.8.	[3]
(ii)	Starting with initial value $x_0 = 0.7$,	
	use the Newton-Raphson method, twice,	
	to give a better approximation to the root of the equation in (i)	
	giving your final answer correct to 4 decimal places.	[5]
		(ii) Starting with initial value $x_0 = 0.7$, use the Newton-Raphson method, twice, to give a better approximation to the root of the equation in (i)

(b) Solve
$$4\cos 2\theta + 1 = 2\cos\theta$$
 for $0 < \theta < 2\pi$. [7]

[2]

Question 7

(a) Solve the differential equation

$$y\frac{\mathrm{d}y}{\mathrm{d}x} = 4\sin x$$

	given	that $y = 1$ when $x = 0$. Express your answer in the form $y = f(x)$.	[5]
(b)		epidemic the number of people infected, y ,	
	decreases as the method of treatment improves.		
	The r	number decreases at a rate proportional to the product of y	
	and the time t since the treatment was started.		
	(i)	Express this information as a differential equation for $t \ge 0$.	[2]
	(ii)	Find the general solution of the equation.	[5]
	(iii)	If initially 2000 were infected	
		and after 20 days the number had reduced to 1000 ,	
		find how many were still infected after a further 20 days.	[3]

Question 8

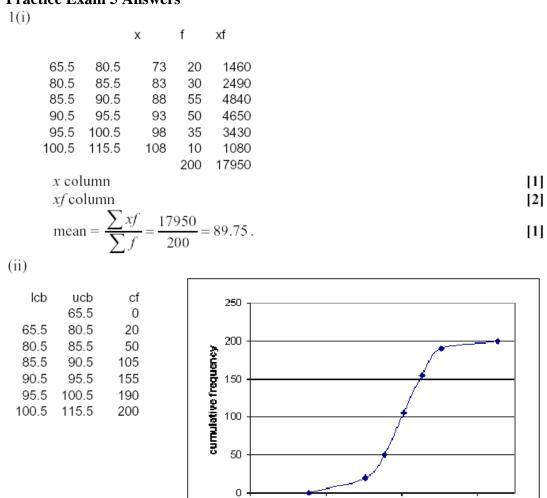
Let A, B and C be points with position vectors

$$a = i - 3j + 2k, b = 2i + 3j + 5k, c = 3i - 2j + 3k,$$

respectively, with respect to the origin O.

(i)	Show that \overrightarrow{OC} is perpendicular to \overrightarrow{AB} .	[3]
(ii)	Let L_1 be the line passing through C parallel to \overrightarrow{OA} .	
	Find the vector equation of L_1 .	[2]
(iii)	Show that L_1 intersects L_2 ,	
	where $L_2 = 2i + 3j + 5k + \mu(2i - 5j + 6k)$,	
	and find the point of intersection.	[6]
(iv)	Find the acute angle between the lines L_1 and L_2 .	[4]

Practice Exam 5 Answers



50

70

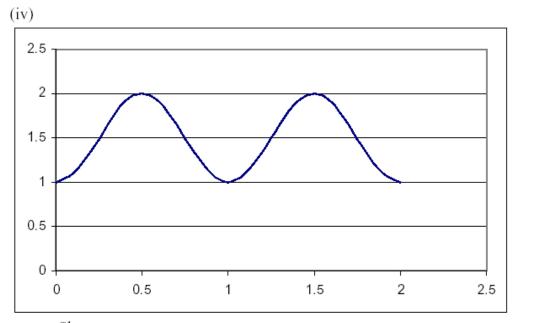
90

number of phones sold

110

	see above	
	labels on vertical axis either absolute or as percentage.	[1]
	values plotted on upper class boundaries	[1]
	points accurately found and plotted	[2]
	smooth curve	[1]
(iii)	On graph look at the 50% line, labelled 100, and read down.	[2]
Co	The value is 90. (Allow variation according to graph drawn.)	[1]
(iv)	The lower quartile is 85.5, (Allow variation according to graph drawn.)	[1]
	the upper quartile is 95, (Allow variation according to graph drawn.) the difference is 9.5. (Allow variation according to graph drawn.)	[1] [1]
	the difference is 9.5. (Anow variation according to graph drawn.)	[1]
2(i)	The range is $-1 \le y \le 1$.	[1]
	1 5 (1 (0.167 (0.822))	101
	$x = \frac{1}{6} \text{ or } \frac{5}{6}$. (Accept 0.167 or 0.833.)	[2]
	The function is not one-one, as we have just established.	[1]
(ii)	$g^{-1}(x) = \sqrt{x-1}$	[2]
	Its domain is $1 \le x < \infty$ or simply $1 \le x$.	[1]
(iii)	$g(f(x)) = 1 + (f(x))^2 = 1 + \sin^2(\pi x)$	[2]
	$\frac{1}{2}$	
	$=1+\frac{1}{2}(1-\cos(2\pi x))$	[2]
	$=\frac{3-\cos(2\pi x)}{2\pi x}$	141
	=	[1]

$$\frac{3-\cos(2\pi x)}{2}$$



Shape position on *x*-axis position on *y*-axis

$$3(a) \qquad \frac{dy}{dx} = e^x \ln x + e^x \frac{1}{x}$$
^[2]

(b)
$$\frac{dy}{dx} = -e^{-x}\cos x - e^{-x}\sin x$$
 [1]

[1]

[1] [1]

Then
$$\cos x = -\sin x$$
, $\tan x = -1$, $x = -\frac{\pi}{4} (\approx -0.785)$. [1]

Here
$$y = e^{\pi/4} \frac{1}{\sqrt{2}} (\approx 1.55).$$
 [1]

$$\frac{d^2 y}{dx^2} = e^{-x} \cos x + e^{-x} \sin x + e^{-x} \sin x - e^{-x} \cos x = 2 e^{-x} \sin x.$$
When $x = -\pi/4$, $\frac{d^2 y}{dx^2} = 2 e^{\pi/4} \sin(-\pi/4) = -\sqrt{2} e^{\pi/4} < 0$
[2]

When
$$x = -\pi/4$$
, $\frac{d^2 y}{dx^2} = 2e^{\pi/4} \sin(-\pi/4) = -\sqrt{2}e^{\pi/4} < 0$. [2]

So the stationary value is a maximum. [1]

(c)
$$\frac{dy}{dx} = 3(2x-3)^2 2 = 6(2x-3)^2$$
 [1]

= 6 at the point (2,1). [1]

The gradient of the normal is therefore
$$-\frac{1}{6}$$
. [1]

The equation of the normal is
$$y = -\frac{1}{6}x + c.$$
 [1]

$$1 = -\frac{1}{6} \times 2 + c, \ c = \frac{4}{3}.$$
[1]

$$y = -\frac{1}{6}x + \frac{1}{3}.$$

x + 6y = 8. [1]

4(a)
$$u = \ln x, x = e^{u}, du = \frac{dx}{x}$$
. [2]

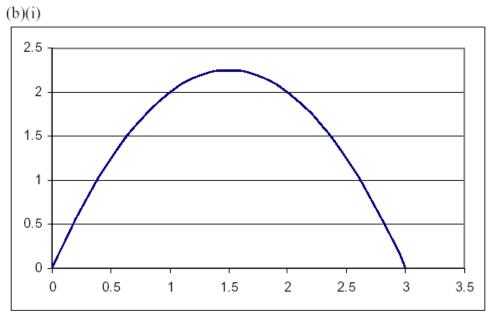
$$\int_{e}^{1} \frac{1}{x(\ln x)^2} dx = \int_{1}^{1} \frac{1}{u^2} du$$
[2]

$$= \left[-\frac{1}{u} \right]_{1}^{2}$$

$$1 \qquad 1$$

$$1 \qquad 1$$

$$= -\frac{1}{2} + 1 = \frac{1}{2}.$$
 [1]



(ii)
$$\int_{0}^{3} (3x - x^{2}) dx = \left[\frac{3x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{3}$$
[1]
[1]
[1]

$$= \left[\frac{27}{2} - \frac{27}{3}\right]$$
[1]

$$=\frac{9}{2}$$
 [1]

(iii)
$$\pi \int_{0}^{3} (3x - x^{2})^{2} dx = \pi \int_{0}^{3} (9x^{2} - 6x^{3} + x^{4}) dx$$
 [1]

$$=\pi \left[\frac{9x^3}{3} - \frac{6x^4}{4} + \frac{x^5}{5}\right]_0^3$$
[1]

$$=\pi \left[81 - \frac{243}{2} + \frac{243}{5} \right]$$
[1]

$$=\frac{81\pi}{10} (\approx 25.4).$$
 [1]

$$5(a)(i) \quad \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x+2} = \frac{A(x+1)(x+2) + B(x-1)(x+2) + C(x-1)(x+1)}{(x^2-1)(x+2)}.$$
[1]

This equals
$$\frac{x+3}{(x^2-1)(x+2)}$$

$$x = 1 \Rightarrow 6A = 6 \Rightarrow A = 1.$$

$$x = -1 \Rightarrow -2B = 4 \Rightarrow B = -2.$$

$$x = -2 \Rightarrow 3C = 3 \Rightarrow C = 1.$$
[1]

$$x = -2 \Rightarrow 3C = 3 \Rightarrow C = 1.$$

Given expression equals $\frac{1}{x-1} - \frac{2}{x+1} + \frac{1}{x+2}$.

(ii) Given integral equals

$$\int_{2}^{4} \left(\frac{1}{x-1} - \frac{2}{x+1} + \frac{1}{x+2}\right) dx = \left[\ln(x-1) - 2\ln(x+1) + \ln(x+2)\right]_{2}^{4}$$

$$= \left[\ln 3 - 2\ln 5 + \ln 6 - \ln 1 + 2\ln 3 - \ln 4\right]$$
[2]

$$= [\ln 3 - 2 \ln 5 + \ln 6 - \ln 1 + 2 \ln 3 - \ln 4]$$

= [(1 + 1 + 2) ln 3 - 2 ln 5 + (1 - 2) ln 2]
= 4 ln 3 - 2 ln 5 - ln 2 = ln $\left(\frac{81}{50}\right) \approx 0.482$]. [M2A2]

(b)
$$\int_{0}^{\pi/2} x^{2} \sin x dx = \left[-x^{2} \cos x \right]_{0}^{\pi/2} + \int_{0}^{\pi/2} 2x \cos x dx$$
[1]

$$= \left[-x^2 \cos x + 2x \sin x \right]_0^{\pi/2} - \int_0^{\pi/2} 2\sin x dx$$
 [1]

$$= \left[-x^2 \cos x + 2x \sin x + 2 \cos x \right]_0^{\pi/2}$$
[1]

$$= 0 + \pi + 0 + 0 - 0 - 2$$
 [1]

$$=\pi-2$$
. [1]

6(a)(i)
$$f(x) = \cos x - x = 0.0648$$
 when $x = 0.7$ and $= -0.1033$ when $x = 0.8$. [2]
Since the sign changes there must be a root between these points. [1]

(ii)
$$f'(x) = -\sin x - 1$$
. [1]

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.7 - \frac{0.0648}{-1.6442} = 0.7394$$
. [M1A1]

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.7394 - \frac{-0.00059}{-1.6739} = 0.7391$$
[M1A1]

(b)
$$8\cos^2\theta - 2\cos\theta - 3 = 0$$
 [2]

$$(2\cos\theta + 1)(4\cos\theta - 3) = 0$$
^[1]

$$\cos\theta = -\frac{1}{2}\operatorname{or}\cos\theta = \frac{3}{4}.$$
[2]

$$\theta = 0.723, 2.09, 4.19, 5.56$$
 [2]

$$\int y dy = \int 4\sin x dx$$
⁽¹⁾

$$\frac{y^2}{2} = -4\cos x + c$$
[2]
$$\frac{1}{2} = -4 + c$$

$$\frac{1}{2} = -4 + c$$

$$c = \frac{9}{2}$$
[1]

$$\frac{y^2}{2} = -4\cos x + \frac{9}{2}$$

$$y = \sqrt{9 - 8\cos x} \tag{1}$$

(b)(i)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = -kyt$$
 [2]

(ii)
$$\int \frac{dy}{y} = \int -ktdt$$
 [1]

$$\ln y = -\frac{kt^2}{2} + c \tag{2}$$

$$y = C e^{-kt^2/2}$$
 [2]

(iii) When
$$t = 0$$
, $y = C$.

$$1000 = 2000 e^{-200k}$$

$$e^{200k} = 2$$
[1]

$$200k = \ln 2$$

$$k = \frac{\ln 2}{200} (\approx 0.003466).$$
 [1]

$$t = 40 \implies y = 2000 \,\mathrm{e}^{-4\ln 2} = 2000 / 16 = 125$$

Alternatively,
$$t = 40 \Rightarrow y \approx 2000 \,\mathrm{e}^{-800 \times 0.003466} \approx 125$$
 [1]

$$8(\mathbf{i}) \quad \overrightarrow{AB} = \mathbf{i} + 6\mathbf{j} + 3\mathbf{k}, \tag{1}$$

$$\overrightarrow{OC.AB} = 3 \times 1 - 2 \times 6 + 3 \times 3 = 0$$
[1]
So the vectors are perpendicular
[1]

(ii)
$$L_1 = 3\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} + 2\mathbf{k})$$
 [2]

(iii) If
$$L_1, L_2$$
 intersect then

$$3 + \lambda = 2 + 2\mu \qquad \qquad \lambda - 2\mu = -1$$
^[1]

$$-2 - 3\lambda = 3 - 5\mu \qquad 3\lambda - 5\mu = -5$$

$$3 + 2\lambda = 5 + 6\mu \qquad 2\lambda - 6\mu = 2$$
^[1]

Solving these we get $\lambda = -5$, $\mu = -2$ which satisfies all three equations [2] So the lines intersect at -2i + 13j - 7k. [1]

(iv)
$$(\mathbf{i} - 3\mathbf{j} + 2\mathbf{k})(2\mathbf{i} - 5\mathbf{j} + 6\mathbf{k}) = 2 + 15 + 12 = 29$$
 [1]

$$|\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}| = \sqrt{1 + 9 + 4} = \sqrt{14}$$

 $|2\mathbf{i} - 5\mathbf{j} + 6\mathbf{k}| = \sqrt{4 + 25 + 36} = \sqrt{65}$ [1]

$$\cos\theta = \frac{29}{\sqrt{14}\sqrt{65}} \approx 0.9613$$

$$\theta = 0.279 = 16.0^{\circ}$$
[M1A1]