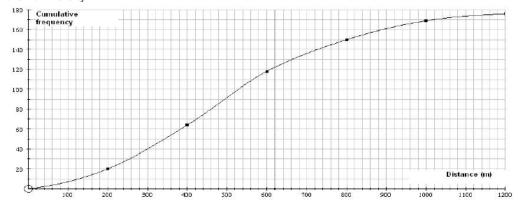
Practice Exam 3 (Engineers)

1 The cumulative frequency graph below illustrates the distance that 176 students live from their university.



Use the graph to estimate to the nearest 10 metres:

(i) the median distance from school;

[1]

(ii) the lower quartile, the upper quartile and the inter-quartile range.

[3]

The graph used the following cumulative frequency grouped data:

Distance (metres)	200	400	600	800	1000	1200
Cumulative frequency	20	64	118	150	169	176

(iii) Copy and complete the grouped frequency table below for this data

[3]

Distance (d metres)	Frequency (f)		
0 < d ≤ 200	20		
200 < d ≤ 400	44		

(iv) Estimate the mean distance using your table.

[4] [4]

(v) Estimate the standard deviation

- $f(x) = 1 + \sqrt{x}$ The function f is defined by $x \ge 0$, $g(x) = x^2$ and the function g is defined by $x \in R$.
 - (i) Find the domain of the inverse function f^{-1} .

[2]

(ii) Find an expression for $f^{-1}(x)$.

[3]

(iii) Sketch the graphs of f(x) and $f^{-1}(x)$, using the same axes.

[4]

(iv) Find and simplify an expression for fg(x) when $x \ge 0$.

[2]

(v) Explain clearly why the value of fg(-2) is 3.

[1]

(vi) Sketch the graph of y = fg(x), for both positive and negative values of x, and give the equation of this graph in simplified form.

[3]

$$x^3 \cos 3x$$
 with respect to x .

(b) Find the stationary value (turning point) of
$$y = \tan x - 8\sin x \qquad \text{for} \qquad 0 < x < \frac{\pi}{2}.$$

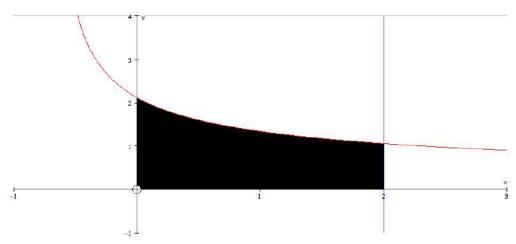
(c) Find the equation of the tangent to the curve
$$y = (x^2 + 1)^4$$
 at the point (1,16).

(d) Given that
$$x = \cos y$$
, prove that $\frac{dy}{dx} = -\frac{1}{\sqrt{(1-x^2)}}$. [4]

4 (a) Use the substitution
$$u^2 = 1 + x$$
 to show that

$$\int_{0}^{1} \frac{x}{\sqrt{(1+x)}} dx = \frac{2}{3} (2 - \sqrt{2}).$$

(b)



The diagram above shows the curve

$$y = \frac{3}{\sqrt{(3x+2)}}$$

The shaded region is enclosed by the curve, the two co-ordinate axes and the line x = 2.

(i) Show that the exact area of the shaded region is $2\sqrt{2}$.

[4]

[2]

[5]

[7]

- (ii) The shaded region is rotated completely about the x-axis. Find the exact value of the volume of the solid formed.
- **5** (a) By finding values of A, B and C so that

[6]

[4]

$$\frac{x^2}{x^2 - 1} = A + \frac{B}{x - 1} + \frac{C}{x + 1}$$

find
$$\int \frac{x^2}{x^2 - 1} dx$$
 . [4]

(b) Use integration by parts to evaluate the integral

$$\int_{6}^{\frac{\pi}{6}} x \cos 3x \, dx \, .$$

$$\sin(x+30^{\circ}) + \sqrt{3}\cos(x+30^{\circ}) = 2\cos x$$

[3]

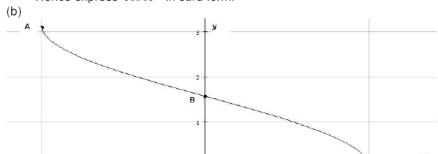
[3]

[5]

[3]

where x is measured in degrees.

Hence express
$$\cos 15^{\circ}$$
 in surd form.



The diagram above shows the curve $y = \cos^{-1} x$.

(i) State the coordinates of the points
$$A: (-1,a)$$
, $B: (0,b)$ and $C: (1,c)$

(ii) Find the value of x for which
$$\cos^{-1} x = b/3$$
. [2]

(iii) The equation of a second curve is
$$y = \frac{1}{2}\cos^{-1}(x-1)$$
. [3] Describe the geometrical transformation to obtain this curve from $y = \cos^{-1} x$.

- (iv) Verify by calculation that the value of x at the point of intersection of the curves is 0.5. [2]
- 7 (a) Solve the differential equation $\frac{dy}{dx} = y^2 e^{-2x}$, given that y = 1 when x = 0. [4] Express your answer in the form y = f(x).
 - (b) A model to estimate the value of a car assumes the rate of decrease of V at time t is proportional to V. The initial value is £20,000.
 - (i) Set up, and solve, a differential equation to show that $V = 20000e^{-kt}$ where k is a positive constant. Show all your working.
 - (ii) Given that the car decreases in value to £12000 in two years, find the value of the car after one year. Give your answer to the nearest £10.
 - (iii) Find the age of the car, in years, when the value is £2000 [2]
- 8 Referred to a fixed origin O, the points A and B have position vectors $3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ and $4\mathbf{i} + 4\mathbf{j} 3\mathbf{k}$, respectively.

The line L_1 passes through A and has equation

$$r = (3i + 2j + 4k) + \mu (5i - 1j - 1k)$$

(i) Show that
$$\overrightarrow{AB}$$
 = is perpendicular to L_1 .

- (ii) The line L_2 passes through B and has direction vector $(2\mathbf{i} + 1\mathbf{j} 2\mathbf{k})$ [1] Find an equation of the line L_2 .
- (iii) Show that the lines L_1 and L_2 intersect and find the coordinates of their point of intersection. [6]
- (iv) Calculate the acute angle, in degrees, between L_1 and L_2 .

Practice Exam 3 Answers

1

(a) Use the graph to estimate to the nearest 10 metres:

) doe the graph to commute to the hearest to metree.	
(i) the median distance from school: accept answers 480-500	[1]
(ii) the lower quartile, accept answers 300-320	[1]
the upper quartile : accept answers 650-670	1
the interquartile range. Follow through from the above	1

(iii)

Distance (d metres)	Frequency (f)	
0 < d ≤ 200	20	
200 < d ≤ 400	44	[3]
400 < d ≤ 600	54	
600 < d ≤ 800	32	
800 < d ≤ 1000	19	
1000 < d ≤ 1200	7	
	Sum = 176	

(iv) Estimate the mean distance =
$$\sum f.(mid - po \text{ int}) / \sum f$$
 = (20 x 100 + 44 x 300 + 54 x 500 + 32 x 700 + 19 x 900 + 7 x 1100)/176 = 507.95 = 508 (3 s.f.)

(v) Estimate the standard deviation =
$$\sqrt{\sum fd^2/176 - mean^2}$$

$$\sum fd^2 = 57200000$$
s.d.² = 32500 - 507.95² = 66986.8
s.d. = 258.8 = 259 (3 s.f.)

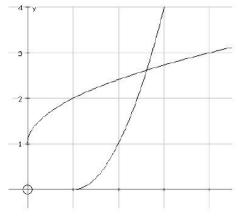
- $\begin{array}{ll} \textbf{2} & \text{The function } f \text{ is defined by} & f(x) = 1 + x^{\frac{1}{2}} & x \geq 0 \ , \\ & \text{and the function } g \text{ is defined by} & g(x) = x^2 & x \in R \ . \end{array}$
 - (i) Domain of f^{-1} is the range of f(x): $f^{-1}(x) \ge 1$

(ii)
$$y = 1 + \sqrt{x}$$

 $\sqrt{x} = y - 1$
 $x = (y - 1)^2$
 $f^{-1}(x) = (x - 1)^2$ (or $x^2 - 2x + 1$)

1
1

(iii)Sketch the graphs of f(x) and $f^{-1}(x)$, using the same axes.



s 2 Shape 2

M1 2

1

М1

Find and simplify an expression for fg(x) when $x \ge 0$.

$$f(x^2)$$

$$=1+x$$
 $x \ge 0$

= 1 + x $x \ge 0$

Explain clearly why the value of fg(-2) is 3.

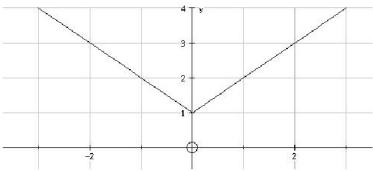
 $=1+\sqrt{4}$ 1

= 3

Sketch the graph of y = fg(x), for both positive and negative values of x, and give the equation of this graph in simplified form.

$$f(x^2)$$
 $x \in R$

$$=1+|x|$$
 $x \in R$



(1 for each branch)

1

1

1

1

1

1

За

$$\frac{d}{dx}(x^3\cos 3x) = 3x^2\cos 3x - 3x^3\sin 3x$$

b

$$y = \tan x - 8\sin x$$

$$0 < x < \frac{\pi}{2}$$

$$\frac{dy}{dx} = \sec^2 x - 8\cos x$$

$$\frac{1}{\cos^2 x} - 8\cos x = 0$$

$$\frac{1 - 8\cos^3 x}{\cos^2 x} = 0$$

$$\cos x \neq 0$$

$$\cos x = \frac{1}{2}$$

$$x = \frac{\pi}{3}$$
 $y = \sqrt{3} - 8(\frac{\sqrt{3}}{2}) = -3\sqrt{3}$ 11

С

$$y = (x^2 + 1)^4$$
 at the point (1,16).

$$\frac{dy}{dx} = 4(x^2 + 1)^3 2x = 8x(x^2 + 1)^3$$

When $x = 1, \frac{dy}{dx} = 64$

1

1

Equation of the tangent at (1,16):
$$y-16 = 64(x-1)$$

d Given that

$$x = \cos y$$
 prove that

$$\frac{dy}{dx} = -\frac{1}{\sqrt{(1-x^2)}}$$

$$\frac{dx}{dy} = -\sin y$$

$$\frac{dy}{dx} = -\frac{1}{\sin y}$$

$$\frac{dy}{dx} = -\frac{1}{\sqrt{(1-\cos^2 y)}}$$

$$\frac{dy}{dx} = -\frac{1}{\sqrt{(1-x^2)}}$$

Let $x = 2 \Rightarrow 3A + C = 5/2$ Subtract; 2A = 2, A = 1

Substitute; C = -1/2

$$u^{2} = 1 + x$$

$$\frac{dx}{du} = 2u$$
When $x = 0$, $u = 1$ and at $x = 1$, $u = \sqrt{2}$

$$\int_{0}^{1} \frac{x}{\sqrt{(1 + x)}} dx = \int_{1}^{\infty} \frac{(u^{2} - 1)}{u} 2u \, du$$

$$= \int_{1}^{\infty} (2u^{2} - 2) \, du$$

$$= \left[\frac{2u^{3}}{3} - 2u \right]_{1}^{\infty}$$

$$= \left(\frac{4\sqrt{2}}{3} - 2\sqrt{2} \right) - \left(\frac{1}{3} - 1 \right)$$

$$= \frac{4}{3} - \frac{2\sqrt{2}}{3} = \frac{2}{3} (2 - \sqrt{2})$$
(b) (i) Area = $\int_{0}^{2} \frac{3}{\sqrt{(3x + 2)}} \, dx$

$$= \int_{0}^{2} 3(3x + 2)^{\frac{3}{2}} \, dx$$

$$= \left[\frac{3}{3 \cdot (\frac{1}{2})} (3x + 2)^{\frac{3}{2}} \right]_{0}^{2}$$

$$= 2\sqrt{8} - 2\sqrt{2}$$

$$= 4\sqrt{2} - 2\sqrt{2} = 2\sqrt{2}$$
(ii) Volume = $\int_{0}^{2} \pi y^{2} \, dx$

$$= \pi \int_{0}^{2} \frac{9}{3x + 2} \, dx$$

$$= \left[\frac{9\pi}{3} \left(\ln |3x + 2| \right) \right]_{0}^{2}$$

$$= 3\pi (\ln 8 - \ln 2) = 3\pi \ln 4$$

$$\frac{x^{2}}{x^{2} - 1} = A + \frac{B}{x - 1} + \frac{C}{x + 1}$$

$$x^{2} = A(x^{2} - 1) + B(x + 1) + C(x - 1)$$
Let $x = 1 \Rightarrow B = 1/2$
Let $x = 0 \Rightarrow A + C = \frac{1}{2}$

$$\frac{x^2}{x^2-1} = 1 + \frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

$$\int \frac{x^2}{x^2 - 1} dx = \int 1 + \frac{1}{2(x - 1)} - \frac{1}{2(x + 1)} dx$$

$$x + \frac{1}{2} \ln|x - 1| - \frac{1}{2} \ln|x + 1| + c$$

$$= x + \frac{1}{2} \ln\left|\frac{x - 1}{x + 1}\right| + c$$
1

(b) $\int x \cos 3x \, dx$

Let
$$u = x$$
 and $dv/dx = \cos 3x$

$$v = \frac{\sin 3x}{3}$$

$$\int x \cos 3x \, dx = \left[x \frac{\sin 3x}{3} \right]_0^{\frac{\pi}{6}} - \int_0^{\frac{\pi}{6}} \frac{\sin 3x}{3} \, dx$$

$$= \left[\frac{x}{3} \sin 3x + \frac{\cos 3x}{9} \right]_0^{\frac{\pi}{6}}$$

$$= \frac{\pi}{18} + 0 - (0 + 1/9)$$

$$= \frac{\pi}{18} + 0 - (0 + 1/9)$$

$$= \frac{\pi}{18} - 1/9$$

6a

$$\sin(x+30^{\circ}) + \sqrt{3}\cos(x+30^{\circ}) = \sin x \cos 30 + \cos x \sin 30 + \sqrt{3}\cos x \cos 30 - \sqrt{3}\sin x \sin 30 \quad 1$$

$$= \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x + \frac{3}{2}\cos x - \frac{\sqrt{3}}{2}\sin x$$

$$= 2\cos x$$

$$2 \cos 15^{0} = \sin 45 + \sqrt{3} \cos 45$$

$$= 1/\sqrt{2} + \sqrt{3}/\sqrt{2}$$

$$\cos 15^{0} = \frac{1+\sqrt{3}}{\sqrt{2}}$$
1

(b) (i) A:
$$(-1, \pi)$$
, B: $(0, \frac{\pi}{2})$ and C: $(1,0)$

(ii)
$$\cos^{-1} x = \frac{\pi}{6}$$
, $x = \cos(\frac{\pi}{6})$, $x = \frac{\sqrt{3}}{2}$

2 Translation, 1 unit along the x axis, 2 Stretch, s.f. 0.5, along the y axis.

(iv)
$$y=\cos^{-1} 0.5 = \frac{\pi}{3}$$

 $y = \frac{1}{2}\cos^{-1}(x-1) = 0.5\cos^{-1}(-0.5) = 0.5(\frac{2\pi}{3}) = \frac{\pi}{3}$

$$\mathbf{r} = (3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}) + \mu (5\mathbf{i} + 1\mathbf{j} + 1\mathbf{k})$$
.

(i) Show that \overline{AB} is perpendicular to L_1 .

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$
= $(4\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}) - (3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k})$
= $\mathbf{i} + 2\mathbf{j} - 7\mathbf{k}$
 $\overrightarrow{AB} \cdot (5\mathbf{i} + 1\mathbf{j} + 1\mathbf{k}) = (\mathbf{i} + 2\mathbf{j} - 7\mathbf{k}) \cdot (5\mathbf{i} + 1\mathbf{j} + 1\mathbf{k}) = 5 + 2 - 7 = 0$
 \therefore OA is perpendicular to AB

(ii) The line L_2 passes through B and has direction vector (2**i** + 1**j** - 2**k**) [1] Find an equation of the line L_2 .

> 1 1

2

1

1

M1

Α1

1

$$r = (4i + 4j - 3k) + \lambda (2i + 1j - 2k)$$

(iii) Show that the lines L_1 and L_2 intersect and find the coordinates of their point of intersection.

Equating the x and y components of L_1 and L_2 ;

$$4 + 2\lambda = 3 + 5 \mu$$

 $4 + \lambda = 2 + 1 \mu$

 $\lambda = -3$, $\mu = -1$

Check the z component for consistency:

$$4 + \mu = 3$$
, $-3 - 2\lambda = -3 + 6 = 3$

Point of intersection (-2, 1, 3)

(iv) Calculate the acute angle, to the nearest degree, between L_1 and L_2 .

$$(5\mathbf{i} + 1\mathbf{j} + 1\mathbf{k}) \cdot (2\mathbf{i} + 1\mathbf{j} - 2\mathbf{k}) = \sqrt{27}\sqrt{9}\cos\theta$$

 $\cos\theta = 9/9\sqrt{3}$
 $\theta = 54.7^{\circ}$