

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYME001 Mathematics Part 2 (Science & Engineering) Mark Scheme

[3]

mark

2 marks

Section A Answer ALL questions. This section carries 40 marks.

Question A1

Differentiate
$$\frac{e^x \cos x}{x^2 + 1}$$
 with respect to *x*.

(It is not necessary to simplify your answer).

Letting:

$$y = \frac{e^{x} \cos x}{x^{2} + 1}$$
$$\frac{dy}{dx} = \frac{(x^{2} + 1)\frac{d}{dx}e^{x} \cos x - e^{x} \cos x.2x}{(x^{2} + 1)^{2}}$$
1

So that:

$$\frac{dy}{dx} = \frac{(x^2 + 1)[e^x \cos x - e^x \sin x] - 2xe^x \cos x.}{(x^2 + 1)^2}$$

Question A2

The equation $x^3 + 8x^2 - 5 = 0$ is to be solved numerically using an iteration [4] formula. One possible formula is:

$$x_{n+1} = \frac{5}{x_n^2 + 8x_n}$$

Give **four** other iteration formulae for the given equation (You do **not** need to find the actual value of the root).

Other rearrangements such as:

$$x_{n+1} = \sqrt{\frac{5-x_n^3}{8}}$$
 $x_{n+1} = \sqrt[3]{5-8x_n^2}$ $x_{n+1} = \sqrt{\frac{5}{x_n+8}}$ $x_{n+1} = \frac{5}{x_n^2} - 8$

1 mark each

Question A3
Given that
$$y = \ln(3x^2 - 5)$$
 where $x^2 > \frac{5}{3}$, find $\frac{dy}{dx}$

[2]

$$\frac{dy}{dx} = \frac{6x}{(3x^2 - 5)}$$
 2 marks

Question A4

Expand the function $f(x) = 3\cos(2x + \frac{\pi}{3})$ Hence show whether f(x) is odd, even or neither. Find the period and amplitude of f(x).

$$f(x) = 3\cos(2x + \frac{\pi}{3}) = \frac{3}{2}[\cos 2x - \sqrt{3}\sin 2x]$$
1 mark

$$f(-x) = \frac{3}{2} [\cos 2x + \sqrt{3} \sin 2x]$$
1 mark

$$f(x) \neq f(-x) \quad f(x) \neq -f(-x)$$

Thus the function is neither odd nor even.

Period is
$$\frac{2\pi}{2} = \pi$$
 1 mark

Amplitude is 3.

1 mark

1 mark

Question A5

If $sin A = \frac{3}{5}$, where $0^{\circ} < A < 180^{\circ}$, find the exact value of cos 2A. [3]

Using

$\cos 2A = 1 - 2\sin^2 A$	1 mark
$\cos 2A = 1 - 2(\frac{9}{25})$	1 mark
$\cos 2A = 7/25$	1 mark

Question A6

Find the angle, in degrees, between the vectors \mathbf{u} and \mathbf{v} where $\mathbf{u} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and **[5]** $\mathbf{v} = \mathbf{i} - \mathbf{j} + \mathbf{k}$.

u = i + j + k, v = i - j + k	
u.v = 1 - 1 + 1 = 1	1 mark
$1 = \sqrt{3} \cdot \sqrt{3} \cos \vartheta$ $\cos \vartheta = \frac{1}{3}$	2 marks
$\mathcal{G} = 70.5$	1 mark

Question A7

The function f(x) is defined for all real values of x by:

f(x) = |3x - 5| - 2

Sketch the graph of y=f(x) indicating the coordinates of the points where the graph crosses the axes and state the range of f(x).

Shape of f(x)

2 marks

[6]

Passes through (0,3)	1 mark
Passes through (1,0)	1 mark
Passes through $\left(\frac{7}{3}, 0\right)$	1 mark
(ii) The range is y≥-2	1 mark

Question A8

Use the substitution $u = 1 + \sin x$ to eval	uate
---	------

 $\int_0^{\frac{\pi}{2}} \cos x \sqrt{1 + \sin x} dx$

 $u = 1 + \sin x, du = \cos x dx$

$$= \int_{x=0}^{\frac{\pi}{2}} u^{1/2} du$$
 1 mark

Changing limits

$$= \int_{u=1}^{2} u^{1/2} du$$

$$= \left[\frac{2}{3}u^{3/2}\right]_{1}^{2}$$
1 mark
1 mark

$$=\frac{2}{3}\left[2^{3/2}-1\right]$$
 1 mark

$$=\frac{2}{3}\left[\sqrt{8}-1\right]$$
 1 mark

Question A9

Find the range, the median and the interquartile range of the following set of data:[6]32,57,25,82,54,37,29,47,65,56,32

Range = 82 -25 = 58	1 mark
25,29,32,32,37,47,54,56,57,65,82	1 mark
Lower quartile 32	1 mark

[6]

1 mark

Upper Quartile 57	1 mark
Median 47	1 mark
Interquartile range 57-32=25	1 mark

Section B Answer <u>4</u> questions. This section carries 60 marks.

Question B1

a)

- i) Given that a curve has equation $y^2 + 3xy + 4x^2 = 37$ find the value [4] of $\frac{dy}{dx}$ at the point (4,-3)
- ii) Find the equation of the normal to $y^2 + 3xy + 4x^2 = 37$ at the point [3] (4,-3).

b) Given that
$$y = x \sin 3x$$
, show that $\frac{d^2 y}{dx^2} + 9y = 6\cos 3x$. [4]

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{\ln(y)}$$

a)

Commencing with:

i) $y^{2} + 3xy + 4x^{2} = 37$ $2y \frac{dy}{dx} + 3x \frac{dy}{dx} + 3y + 8x = 0$ $(2y + 3x) \frac{dy}{dx} = -3y - 8x$ $\frac{dy}{dx} = \frac{-3y - 8x}{2y + 3x}$ 1 mark At (4,-3) $\frac{dy}{dx} = -23/6$ ii) At (4,-3) $\frac{y + 3}{x - 4} = \frac{dy}{dx}|_{(4,-3)} = \frac{6}{23}$ 2 marks

2 marks

So that:

$$23y = 6x - 93$$
 1 mark

b)
$$y = x \sin 3x$$

Therefore:

$$\frac{dy}{dx} = \sin 3x + 3x \cos 3x \qquad 1 \text{ mark}$$

$$\frac{d^2 y}{dx^2} = -9x\sin 3x + 6\cos 3x$$
 1 mark

So that:

$$\frac{d^2y}{dx^2} + 9y = -9x\sin 3x + 6\cos 3x + 9\sin 3x = 6\cos 3x$$

c)

$$\int (1)\ln(y) = \int x dx$$

$$1 \text{ mark}$$

$$u = \ln(y), \frac{dv}{dt} = 1, v = y, \frac{du}{dt} = \frac{1}{2}$$

$$\frac{1}{dy} = \frac{1}{dy} + \frac{1}{dy}$$

$$y \ln(y) - \int y \cdot \frac{1}{y} dy = \frac{x^2}{2} + c$$
 1 mark

$$y\ln(y) - y = \frac{x^2}{2} + c$$
 1 mark

Question B2

a) Figure 1 shows the curve with equation y = f(x).

The only maximum point of the curve is A(-2,7).

Describe the transformation and write down the coordinates of the maximum point for the curves with each of the following equations:

i.
$$y = f(x) - 2$$
 [2]

ii.
$$y = f(3x) + 7$$
 [3]

iii.
$$y = 3f(x+2)$$
 [3]

b) Functions p and q are defined as follows:

$$p(x) = x + 2$$
$$q(x) = x2 + 3x - 4$$

i. Evaluate
$$p(q(-3))$$
 and $q(p(-3))$. [2]

ii. Solve
$$p(q(x)) = q(p(x))$$
 for x. [4]

iii. Find an expression for
$$p^{-1}(x)$$
. [1]

Solutions:

a)

i. Translate the whole curve -2 units parallel to y-axis.	1 mark
new minimum @ <u>(-2,5).</u>	1 mark
ii. Translate the whole curve 7 units parallel to y-axis	1 mark
stretch it by a factor of 1/3 parallel to x-axis,	1 mark
new max at (-2/3,14).	1 mark
iii. Translates the whole curve 2 units to the left	1 mark
and stretches by scale factor 3 parallel to y-axis	1 mark

1 mark

new max at (-4,21).1 markb)i q(-3) = -4, pq(-3) = -2, p(-3) = -1, qp(-3) = -62 marksii
$$x^2 + 3x - 2 = x^2 + 4x + 4 + 3x + 6 - 4$$
2 marks

lii
$$p^{-1}(x) = x - 2$$

Question B3

$$\int_0^1 x^2 e^x dx$$

b) i. Express:
$$f(x) = \frac{2}{(2-x)(1+x)^2}$$
 [5]

in the form:

$$f(x) = \frac{A}{(2-x)} + \frac{B}{(1+x)} + \frac{C}{(1+x)^2}$$

where A, B and C are constants to be determined.

ii. Use your results from b)(i) above to show that: [5]

$$\int_0^1 f(x)dx = \frac{1}{9}\ln(16) + \frac{1}{3}$$

a) Define $I = \int_0^1 x^2 e^x dx$

Letting

$$u = x^2, \frac{du}{dx} = 2x$$

$$\frac{dv}{dx} = e^x, v = e^x$$

So that

1 mark

$I = [x^2 e^x]_0^1 - 2 \int_0^1 x e^x dx$	1 mark
Letting	
$u = x, \frac{du}{dx} = 1$	
$\frac{dv}{dx} = e^x, v = e^x$	1 mark
So that:	
$I = [x^{2}e^{x} - 2xe^{x} + 2e^{x}]_{0}^{1} = e - 2$	2 marks
b) i) $f(x) = \frac{A}{(2-x)} + \frac{B}{(1+x)} + \frac{C}{(1+x)^2}$	
$\therefore 2 = A(1+x)^2 + B(2-x)(1+x) + C(2-x)$	2 marks
Letting: $x = 2 \Longrightarrow A = 2/9$	1 mark
Letting: $x = -1 \Longrightarrow C = 2/3$	1 mark
Letting: $x = 0 \Longrightarrow B = 2/9$	1 mark

If the student equates coefficients, one mark is to be awarded for each correct determination of the constants.

ii)

$$\int_{0}^{1} f(x)dx = \frac{2}{9} \int_{0}^{1} \frac{1}{2-x} dx + \frac{2}{9} \int_{0}^{1} \frac{1}{1+x} dx + \frac{2}{3} \int_{0}^{1} \frac{1}{(1+x)^{2}} dx$$

So that:

$$\int_{0}^{1} f(x)dx = -\frac{2}{9} \left[\ln(2-x) \right]_{0}^{1} + \frac{2}{9} \left[\ln(1+x) \right]_{0}^{1} - \frac{2}{3} \left[\frac{1}{1+x} \right]_{0}^{1}$$
2 marks

Giving:

$$\int_{0}^{1} f(x)dx = \frac{2}{9}\ln(2) - \frac{1}{3} + \frac{2}{9}\ln(2) + \frac{2}{3}$$
 2 marks

So that:

$$\int_{0}^{1} f(x)dx = \frac{1}{9}\ln(16) + \frac{1}{3}$$
 1 mark

Question B4

Referred to an origin O, the lines l_1 and l_2 have equations:

 $l_1: r = i + 2j + 6k + \lambda(i + j - 9k)$ $l_2: r = 4i - 2j - 8k + \mu(i - 6j + 4k)$

respectively, where λ and μ are scalars to be determined. a)

- i. Prove that the lines intersect and find the position vector of the point of [5] intersection P.
- ii. Find the distance between O and P. [2]
- iii. Find the vector equation of the line which passes through the points [3] (2,1,9) and (4,-1,8).
- b) i. Find the value of λ given that the given vectors are perpendicular

 $\frac{9i - 3j + 5k}{\lambda i + \lambda j + 3k}$ [2]

ii. Simplify as far as possible, given that b is perpendicular to c

$$\underline{a}.(\underline{b}+\underline{c})+\underline{b}.(\underline{a}-\underline{c})$$
[3]

Solutions:

a) equating components: $i:1+\lambda = 4 + \mu$ $j:2+\lambda = -2-6\mu$ $k:6-9\lambda = -8+4\mu$ 1 mark

Using the i and j equations gives:

 $7\mu = -7$

1 mark (If students eliminate λ then similarly award 1 mark)

$$\lambda = 2$$

 $\mu = -1$ 2 marks (1 for each correct answer)

Students must show that the remaining equation is now an identity.1 mark

$\overrightarrow{OP} = 3i + 4j - 12k$	1 mark
ii. $\overrightarrow{IOP!} = \sqrt{3^2 + 4^2 + (-12)^2}$	1 mark
$\overrightarrow{!OP!} = \sqrt{169} = 13$	1 mark
iii.	
$r = \underline{a} + \lambda(\underline{b} - \underline{a})$	
$r = 2i + j + 9k + \lambda(4i - j + 8k - (2i + j + 9k))$	2 marks
$r = 2i + j + 9k + \lambda(2i - 2j + -k)$	1 mark
b)	
$\mathbf{i.} \ 9\lambda - 3\lambda + 15 = 0$	1 mark
$\lambda = -16/6 = -5/2$	1 mark
ii. $\underline{a}.(\underline{b}+\underline{c}) + \underline{b}.(\underline{a}-\underline{c}) = \underline{a}.\underline{b} + \underline{a}.\underline{c} + \underline{b}.\underline{a} - \underline{b}.\underline{c}$	
$\underline{a}.(\underline{b} + \underline{c}) + \underline{b}.(\underline{a} - \underline{c}) = \underline{a}.\underline{b} + \underline{a}.\underline{c} + \underline{b}.\underline{a} - \underline{b}.\underline{c}$	1 mark
$\underline{b}\underline{c} = 0$	1 mark
$\underline{a}.(\underline{b}+\underline{c})+\underline{b}.(\underline{a}-\underline{c})=2\underline{a}.\underline{b}+\underline{a}.\underline{c}$	1 mark

Question B5

a)	i.	Show that the function $f(x) = 2x^2 - \ln(x+2)$ has a root between x=0	
		and $x = 1$	
	ii.	Starting with initial value $x_0 = 0.5$ use the Newton-Raphson method	[6]

- **twice**, to give a better approximation to the root of the equation in i. Give your final answer correct to **three** decimal places.
- b) Find the volume generated when the area between the curve $y = e^{2x} + 3$, [6] the x-axis, the y axis and the line x=1 is rotated through one revolution about the x-axis.

a) i.

$$f(x) = 2x^{2} - \ln(x+2)$$

$$f(0) = 2.0^{2} - \ln(2) = -\ln(2) < 0$$
1 mark
$$f(1) = 2.1^{2} - \ln(3) = 0.901 > 0$$
1 mark

Thus there has been a change of sign hence a root exists between x=0 and x=1. 1 mark

ii.
$$f'(x) = 4x - \frac{1}{x+2}$$
 1 mark

So that:

$$x_{n+1} = x_n - \left[\frac{2x^2(x+2) - (x+2)\ln(x+2)}{4x(x+2) - 1}\right] \quad \underline{0.e}.$$
1 mark
 $x_0 = 0.5$

$$x_1 = 0.760181707$$
 2 marks

$$x_2 = 0.70774209 = 0.708(3dp)$$
 2 marks

b)
$$V = \int_0^1 \pi y^2 dx$$

c) So that:

$$V = \pi \int_{0}^{1} e^{4x} + 6e^{2x} + 9dx$$
final field of the formula of the formu

$$V = \frac{\pi}{4} \left(\frac{e^4}{4} + 3e^2 + 9 - \frac{1}{4} - 3\right)$$
 2 marks
$$V = \frac{\pi}{4} \left(\frac{e^4}{4} + 3e^2 + \frac{23}{4}\right)$$
 1 mark

Question B6

The grouped frequency table below shows the number of mobile phones sold per week in a store during a period of 110 weeks:

2 marks

Number of mobile	Frequency
phones sold	
0 - 19	6
20 - 29	13
30 - 39	16
40 - 49	27
50 — 59	28
60 - 69	13
70 - 89	7

a)	Calculate the mean number of mobile phones sold per week.	[4]
b)	Find the standard deviation of the data.	[5]
c)	By copying and extending the table in an appropriate manner, draw the graph of the cumulative frequency polygon.	[4]
d)	Using your graph, estimate the median of the data.	[2]

Solutions:

Number	Frequency,	$x_{midpoint}$	$x_{midpoint}f$	$x_{midpoint}^2 f$	Cumulative
OF CEII	T				frequency
sold					
0-19	6	9.5	57	541.5	6
20 - 29	13	24.5	318.5	7803.25	19
30 - 39	16	34.5	552	19055	35
40 - 49	27	44.5	1201.5	53466.75	62
50 - 59	28	54.5	1526	83167	90
60 - 69	13	64.5	838.5	54083.24	103
70 - 89	7	79.5	556.5	44241.75	<u>110</u>
	Sum=110		Sum=5050	Sum=262347.5	

a) Correct midpoint column. Correct $x_{midpoint} f$ column	1 mark 1 mark
Correct calculation of mean=5050/110=45.91	2 marks
b) Correct $x_{midpoint}^2 f$ column and sum.	2 marks
$\sigma = \sqrt{\frac{262347.5}{110} - (45.91)^2}$	2 marks
$\sigma = 16.65 = 16.7$	1 mark

d) Indication of median read from cf 55 Median45-48 acceptable 1 mark 1 mark