

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYMB001 Mathematics Part 2 (Business) Examination Mark Scheme

2012-13

Mark Scheme

Notice to markers.

Significant Figures:

All <u>correct</u> answers should be rewarded regardless of the number of significant figures used, with the exception of question A2. For this question, 1 discretionary mark is available which will <u>only</u> be awarded to students who correctly give their answer to the number of significant figures explicitly requested.

Error Carried Forward:

Whenever a question asks the candidate to calculate-or otherwise produce-a piece of information that is to be used later in the question, a marker should consider the possibility of error carried forward. A careless error early in the question may make it impossible for a candidate to answer the remainder of the question correctly. Where a candidate has been careless with initial data, but has gone on to demonstrate knowledge of the correct method, they should be awarded marks for the method only.

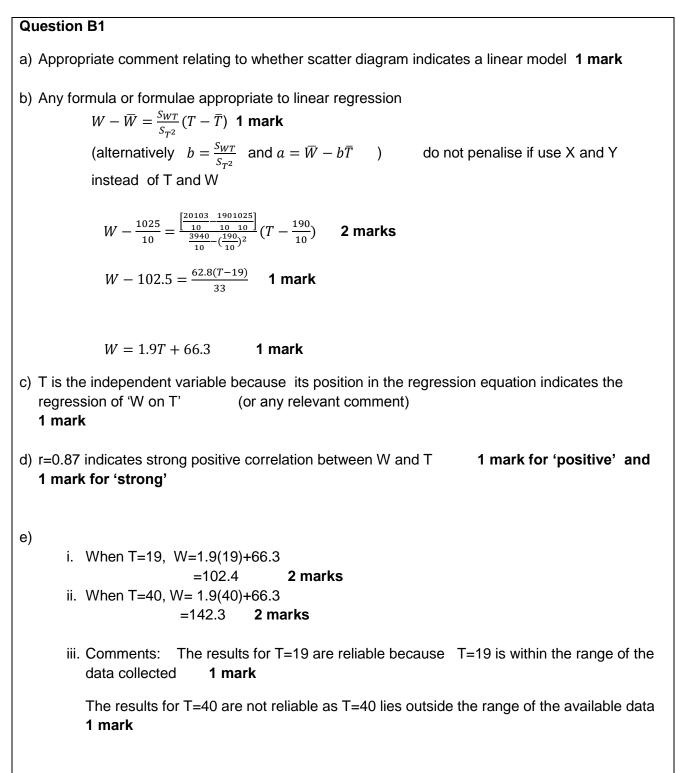
When this happens, write ECF next to the ticks.

M=Method A=Answer

Question A1 $\bar{x} = \frac{\sum x}{n}$ $\bar{x} = \frac{245}{9}$ 1 mark $\bar{x} = 27.2$ (1dp) 1 mark $\sigma = \sqrt{\frac{\sum x^2}{n} - (\bar{x})^2}$ $\sigma = \sqrt{\frac{6953}{9} - 27.2^2}$ 1 mark $\sigma = 5.6$ (1 dp) 1 mark

Question A2 a)i. hgf(x) = hg(x+3) $= h(e^{(x+3)})$ **1 mark** $= (e^{(x+3)})^2$ $= e^{(2x+6)}$ 1 mark ii. $hgf(0.5) = e^{(2(0.5)+6)}$ $= e^7$ 1 mark = 1096.6= 1100(3sf) 1 mark (only award mark if answer given to 3sf) Question A3 Let X be the number born on a Friday then X is Binomial (10, 1/7)P(x < 3) = P(0) + P(1) + P(2) 1 mark $= {\binom{10}{0}} {\left(\frac{1}{7}\right)}^0 {\binom{6}{7}}^{10} + {\binom{10}{1}} {\left(\frac{1}{7}\right)}^1 {\binom{6}{7}}^9 + {\binom{10}{2}} {\left(\frac{1}{7}\right)}^2 {\binom{6}{7}}^8$ 2 marks =0.214058+0.356764+0.2675728 =0.838395=0.84 **1 mark** Assumptions: A person equally likely to be born on any of the 7 week days and for any two individuals, the birthday is independent 1 mark **Question A4** Using $AA^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ or implied from eqs **1 mark** $\begin{bmatrix} 3 & -2 & 0 \\ -1 & 2 & 1 \\ -2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 2 \\ 1 & a & 3 \\ b & c & -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Any acceptable method where working is shown which gives a=-3, b=-1.and c=5 3 marks

Question A5


a) É[3X+10]=45.6 then E[X]=(45.6-10/3) = 11.8666 **1 mark** =11.9 1 mark b) Var[X] V(3X+10)= 3.2 V(3X) =3.2 1 mark 9V(X)=3.2 V(X)=3.2/9 =0.35555... =0.356 =0.36 1 mark Question A6 $\frac{x+5}{(x+2)^2(x-4)} = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{(x-4)}$ 1 mark for the split Any method which gives $A = \frac{-1}{4}, B = \frac{-1}{2}, C = \frac{1}{4}$

3 marks one for each correct answer

Question A7 $u = e^{4x}$ $v = x^3 cosx$ $u' = 4e^{4x} \qquad v' = 3x^2 cosx - x^3 sinx$ 2 marks one for each correct u' and v' $\frac{dy}{dx} = \frac{(x^3 \cos x)4e^{4x} - e^{4x}(3x^2 \cos x - x^3 \sin x)}{(x^3 \cos x)^2}$ 1 mark for putting it together $=\frac{e^{4x}((4x^{3}cosx) - (3x^{2}cosx - x^{3}sinx))}{x^{6}cos^{2}x}$ $=\frac{x^2e^{4x}(4xcosx-3cosx+xsinx)}{x^6cos^2x}$ $=\frac{e^{4x}(4x\cos x - 3\cos x + x\sin x)}{x^4\cos^2 x}$ 1 mark **Question A8** $\int_{1}^{2} 2xe^{x^{2}} dx = \left[e^{x^{2}}\right]_{1}^{2} \quad 1 \text{ mark}$ $= e^4 - e$ 1 mark = 51.87= 51.9 (1dp) **1 mark** Question A9 0.1x250+0.2x310+0.7x430 2 marks =388 1 mark therefore £390 to nearest £10 1 mark Question A10 a) $\mu = 9.2 \pm 1.96 \sqrt{\frac{16}{10}}$ **1 mark**

 $\mu = [6.72, 11.7]$ **2 marks**

b) Statement B is true. 1 mark

Question B3

a) i.

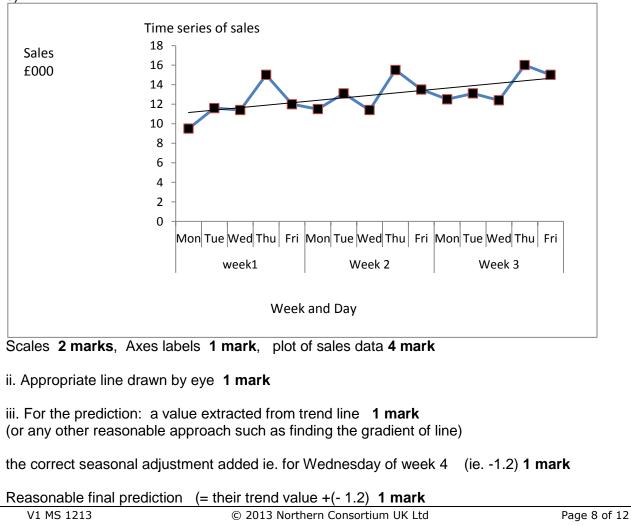
Day Moving average		у-а	
Wed	69/5=13.8	12.4-13.8=-1.4	

ii. Table 2

2 marks (1 mark for each of the 2 missing values)

Seasonal Deviations

Ocasonal Deviations					
	Mon	Tue	Wed	Thu	Fri
Week 1	-	-	-0.5	2.7	-0.6
Week 2	-1.1	0.4	-1.6	2.3	0.3
Week 3	-0.9	-0.4	-1.4	-	-
Total	-2.0	0.0	-3.5	5.0	-0.3
Average	-1.0	0.0	-1.2	2.5	-0.1


Or any

appropriate

rounding

2 marks for all 3 missing values (only 1 mark if less than 3 completed)

b) i.

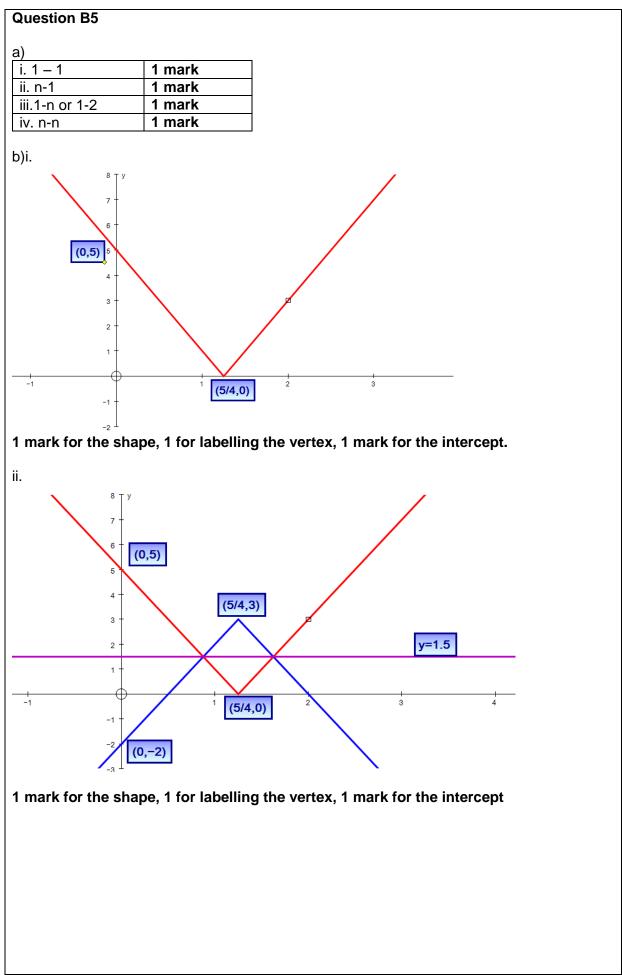
Question B4

a)

a)	
Boundaries	C.F.
0	0
3	10
6	29
9	40
12	56
15	68
18	77
21	80

1 mark for the correct class boundaries which should include 0.
 1 mark for the CF column

b)


Scales	1 mark
Axes labels (both no half marks)	1 mark
Plot of CF <u>6 or more correct</u> . FOR FULL MARKS. But only if GRAPH PAPER IS USED.	2 marks
Polygon straight lines only	1 mark

c)

Median	9	1 mark	Award
Lower	4.6	1 mark	marks
Quartile			according
Upper	12.6	1 mark	to
Quartile			students
IQR	8	1 mark	graph

d)

Females	km	Males	km	Any reasonable comments
Min. Distance	0.5	Min. Distance	0.6	award the marks. Please give 1 mark if students actually look at
Max Distance	15	Max Distance	19.3	the raw data as well as the Median, and quartiles. If they
Median	7.6	Median	9	come up with any reasonable
Lower Quartile	3.5	Lower Quartile	4.6	explanation for the data award a mark.
Upper Quartile	10.9	Upper Quartile	12.6	4 marks
IQR	7.4	IQR	8]

iii.	
y=4x-5 know y=1.5 1 mark for knowing y = 1.5	Alternative:
	4x-5=-4x+8
1.5=4x-5 therefore x=6.5/4=13/8	8x=13
1 mark for x	x=13/8 2 marks
13/8 -5/4 =3/8	put into y=4x-5 gives y=13/2-5=1.5 1 mark
therefore 5/4-3/8=7/8 2 marks	
(7/9, 1, 5) and $(12/9, 1, 5)$ 1 mark	-4x+5=4x-2 -8x=-7→x=7/8 1 mark
(7/8,1.5) and (13/8,1.5) 1 mark	$-0\lambda = -1$ 7 $\lambda = 1/0$ 1 IIIdI K
	therefore((7/8,1.5) and (13/8,1.5) 1 mark

Question B6

a)i. A is on the x-axis, therefore y=0
$x^{\left(\frac{2}{3}\right)} = 6$
$x = \sqrt{6^3} = 6\sqrt{6}$ 1 mark
Co-ordinates of A are $(6\sqrt{6}, 0)$ 1 mark
ii) $x^{\left(\frac{2}{3}\right)} + y^{\left(\frac{2}{3}\right)} = 6$
$y^{\left(\frac{2}{3}\right)} = 6 - x^{\left(\frac{2}{3}\right)}$
$y^2 = \left(6 - x^{\left(\frac{2}{3}\right)}\right)^3$ 1 mark
$V = \pi \int_0^{6\sqrt{6}} y^2 dx$
$V = \pi \int_0^{6\sqrt{6}} \left(6 - x^{\left(\frac{2}{3}\right)}\right)^3 dx \qquad \text{using Pascal's Triangle}$
$V = \pi \int_0^{6\sqrt{6}} (6^3 + 3.(6)^2 \left(-x^{\left(\frac{2}{3}\right)} \right) + \frac{3.2}{2} (6) (-x^{\frac{2}{3}})^2 + \left(-x^{\frac{2}{3}} \right)^3) dx$
2 marks (1 mark for each pair)
$V = \pi \int_0^{6\sqrt{6}} \left(-x^2 + 18x^{\left(\frac{4}{3}\right)} - 108x^{\left(\frac{2}{3}\right)} + 216 \right) dx \qquad 1 \text{ marks}$
$V = \pi \left[\frac{-x^3}{3} + \frac{3}{7} \cdot 18x^{\frac{7}{3}} - \frac{3}{5} \cdot 108x^{\frac{5}{3}} + 216x \right]_0^{6\sqrt{6}}$
2 marks(1 mark for each pair)
V=1519.711 = 1520 1 mark

b)
i)
$$y^2 + 2y - 1 = 0$$
 1 mark
 $y = \frac{-2 \pm \sqrt{2^2 - 4(1)(-1)}}{2}$
 $y = \frac{-2 \pm \sqrt{2}}{2} = -1 \pm \sqrt{2}$ 1 mark
ii) $2y \frac{dy}{dx} + 2\frac{dy}{dx} - 9x^2 siny - 3x^3 cosy \frac{dy}{dx} = 2$ 1 mark
(If the student realises that they don't need the x terms then there is no
need to see the diff.)
When x=0, and y = -1+ $\sqrt{2}$
 $2y \frac{dy}{dx} + 2\frac{dy}{dx} = 2$ 1 mark
 $y \frac{dy}{dx} + \frac{dy}{dx} = 1$
 $\frac{dy}{dx}(y + 1) = 1$
 $\frac{dy}{dx}(-1 + \sqrt{2} + 1) = 1$
 $\frac{dy}{dx} = \frac{1}{\sqrt{2}}$ 1 mark
Tangent equation
 $y = \frac{1}{\sqrt{2}}x + c$
 $-1 + \sqrt{2} = \frac{1}{\sqrt{2}} \cdot 0 + c$
 $-1 + \sqrt{2} = c$
 $y = \frac{1}{\sqrt{2}}x - 1 + \sqrt{2}$ 1 mark