

THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY)

IFYHM001 Mathematics Part 1 Examination

MARK SCHEME Version 1 2011–12

V1 1112 Page 1 of 8

Level of accuracy: If a question specifies how many decimal places or significant figures are required, there is a mark for this. Otherwise accept any reasonable level of accuracy and alternative form.

Error carried forward: Where numerical errors have been made, students lose a mark/marks at that stage but may be awarded marks for using correct methods subsequently if the student demonstrates basic understanding.

Section A

A1 The gradient of the given line is $\frac{4}{3}$.

The equation of the line has the form $y = \frac{4}{3}x + c$.

Since it passes through (6,0), $0 = \frac{24}{3} + c$, c = -8

So the equation is $y = \frac{4}{3}x - 8$ or 4x - 3y = 24.

A2 We have to solve the simultaneous equations 5x-4y+1=0 and y=4.

V1 1112 Page **2** of **8**

$$5x-16+1=0$$

$$x=3, y=4. \text{ The point of intersection is (3,4).}$$

A3
$$\begin{pmatrix} 7 & 0 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} 3 & -4 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} 7 \times 3 + 0 \times 1 & 7 \times -4 + 0 \times 5 \\ -2 \times 3 + 5 \times 1 & -2 \times -4 + 5 \times 5 \end{pmatrix} = \begin{pmatrix} 21 & -28 \\ -1 & 33 \end{pmatrix}$$
 4

A4
$$6x^2 + x - 15 = (2x - 3)(3x + 5) = 0$$

Either $2x - 3 = 0$ so $x = \frac{3}{2}$

or
$$3x+5=0$$
 so $x=-\frac{5}{3}$

A5
$$4y^2 + 7y > 2y + 6$$

 $4y^2 + 5y - 6 > 0$
 $(4y - 3)(y + 2) > 0$
1
 $y < -2$ or $y > \frac{3}{4}$

A6 The term in
$$x^4$$
 is ${}^6C_4(2x)^4(-3)^2$ so the coefficient of x^4 is
$$\frac{6\times 5\times 4\times 3}{1\times 2\times 3\times 4}\times 2^4\times 3^2$$
 1 = 15×16×9 = 2160

A7
$$x^{3/2}x^{-2/3} = x^{3/2-2/3} = x^{9/6-4/6} = x^{5/6} = 243 = 3^5$$

So $x = 3^6 = 729$.

A8
$$e^{4x} + e^{2x} - 12 = 0$$

 $(e^{2x})^2 + e^{2x} - 12 = 0$
 $(e^{2x} + 4)(e^{2x} - 3) = 0$
 $e^{2x} + 4 = 0$ or $e^{2x} - 3 = 0$
 $e^{2x} = -4$ or $e^{2x} = 3$
But $e^{2x} > 0$, so $e^{2x} = 3$
So $2x = \ln 3$ $x = \frac{1}{2} \ln 3$
 $x = 0.5493$ correct to 4 decimal places

A9
$$y = x^{-2} + 4e^x - 3\cos x$$

 $\frac{dy}{dx} = -2x^{-3} + 4e^x + 3\sin x$
3

V1 1112 Page 3 of 8

When
$$x = 2$$
 this equals $-\frac{2}{8} + 4e^2 + 3\sin 2 \approx 32$

A10
$$\int_{-1}^{3} (3e^{x} + 5x) dx = \left[3e^{x} + \frac{5}{2}x^{2} \right]_{-1}^{3}$$

$$= 3e^{3} + \frac{5 \times 9}{2} - 3e^{-1} - \frac{5}{2} = 3e^{3} - 3e^{-1} + 20$$

$$\approx 79.2$$
2

1

B1 (i) The curved surface has area equal to the height times the circumference.

This is $h \times 2\pi r$.

Each end has area πr^2 and there are two ends.

1

The total area is $A = 2\pi r^2 + 2\pi r h$.

(ii) The volume is the area of the base times the height.

This is $\pi r^2 h$, and this must equal 200. Therefore $h = \frac{200}{\pi r^2}$.

Therefore $A = 2\pi r^2 + \frac{400}{r}$.

(iii)
$$\frac{dA}{dr} = 4\pi r - \frac{400}{r^2} = 0$$

V1 1112 Page **4** of **8**

So
$$4\pi r^3 = 400$$
 and $r = \sqrt[3]{\frac{100}{\pi}} \approx 3.169$. So the radius is 3.169 cm.

To show this gives a minimum,
$$\frac{d^2A}{dr^2} = 4\pi + \frac{800}{r^3} > 0.$$

(iv)
$$h = \frac{200}{\pi r^2} \approx 6.34$$
. So the height is 6.34 cm.

B2 (i)
$$u_1 = 5$$
, $u_2 = 3.4$, $u_3 = 4.529$, $u_4 = 3.649$. This is convergent.
 $v_1 = 2$, $v_2 = 0$, $v_3 = -2$, $v_4 = 2$. This is periodic.
 $w_1 = 1$, $w_2 = 2$, $w_3 = 3$, $w_4 = 6$, $w_5 = 27$. This is divergent.

(ii) If the limit is
$$u$$
 then $u = \frac{12}{u} + 1$. So $u^2 - u - 12 = 0 = (u - 4)(u + 3)$.
So $u = 4$ or $u = -3$. But $u > 0$, so $u = 4$.

b(i) If the first term of the arithmetic series is a and the common difference is d

then
$$\frac{a+3d}{a} = \frac{a+12d}{a+3d}$$

So
$$a^2 + 6ad + 9d^2 = a^2 + 12ad$$

$$6a + 9d = 12a$$
 $3d = 2a$

$$6a + 9d = 12a$$
 $3d = 2a$ 1
Also $a + 5d = 78$ $3d = 2(78 - 5d)$ $13d = 156$ 1

So
$$d = 12$$
 $a = 18$.

V1 1112 Page 5 of 8

1

B3a(i) The first logarithm is defined when $x > \frac{1}{2}$ and the second when $x > \frac{4}{3}$.

(ii)
$$10x - 5 = (3x - 4)^{2}$$

$$= 9x^{2} - 24x + 16$$

$$9x^{2} - 34x + 21 = 0$$

$$(9x - 7)(x - 3) = 0$$

$$1$$

$$x = \frac{7}{9}, 3$$

The first value must be rejected since the second logarithm is not defined, so the only solution is x = 3.

b(i) From the given data,
$$75 = Ae^{7k}$$
, $170 = Ae^{12k}$

Dividing: $e^{5k} = \frac{170}{75} = \frac{34}{15}$

Taking logarithms:
$$5k = \ln\left(\frac{34}{15}\right), \quad k = \frac{1}{5}\ln\left(\frac{34}{15}\right) \approx 0.1637 \approx 0.164$$

Then
$$A = 75e^{-7k} \approx 23.851 \approx 23.9$$

(ii)
$$V(15) = Ae^{15k} \approx 277.8 \approx 278$$

B4

a 5.42 radians =
$$\frac{5.42 \times 180^{\circ}}{\pi}$$
 = 310.54° \approx 311°

b Let the distance from the bottom of the cliff to the nearer shore of the lake be $x \, \mathrm{m}$. 1

Then
$$\frac{h}{x} = \tan 56^{\circ}$$
, $\frac{h}{x + 400} = \tan 34^{\circ}$

$$x \tan 56^\circ = h = (x + 400) \tan 34^\circ$$

$$x(\tan 56^{\circ} - \tan 34^{\circ}) = 400 \tan 34^{\circ}$$

$$x = \frac{400 \tan 34^{\circ}}{\tan 56^{\circ} - \tan 34^{\circ}} \quad (=155.7)$$

$$h = x \tan 56^{\circ} = \frac{400 \tan 34^{\circ} \tan 56^{\circ}}{\tan 56^{\circ} - \tan 34^{\circ}}$$

$$=495.02 \approx 495 \text{m}$$

c
$$A=6$$

 $D=9$
 $B=\frac{1}{6}$

$$C = -\frac{4\pi}{3}$$
 (or $C = \frac{2\pi}{3}$)

V1 1112 Page 6 of 8

B5(i)
$$y = 2x - 7 \ln x - \frac{3}{x}$$

$$\frac{dy}{dx} = 2 - \frac{7}{x} + \frac{3}{x^2}$$

$$\frac{d^2y}{dx^2} = \frac{7}{x^2} - \frac{6}{x^3}$$
1

(ii) At the stationary points $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$.

$$2x^{2} - 7x + 3 = 0$$

$$(2x - 1)(x - 3) = 0$$

$$x = \frac{1}{2}, 3$$
When $x = \frac{1}{2}, y = 1 - 7\ln\left(\frac{1}{2}\right) - 6 = -0.14797 \approx -0.148$

When
$$x = 3$$
, $y = 6 - 7 \ln 3 - 1 = -2.6902 \approx -2.69$

(iii) When
$$x = \frac{1}{2}$$
, $\frac{d^2y}{dx^2} = 28 - 48 = -20$
< 0 so this is a local maximum.

1

When $x = 3$, $\frac{d^2y}{dx^2} = \frac{7}{9} - \frac{6}{27} = \frac{5}{9}$
> 0 so this is a local minimum.

(iv) When
$$x = 1$$
, $y = 2 - 0 - 3 = -1$, $\frac{dy}{dx} = 2 - 7 + 3 = -2$. 2

The equation of the tangent is $y = -2x + c$, $-1 = -2 + c$, $c = 1$. 1

That is $y = -2x + 1$ or $2x + y = 1$.

B6(i) The gradient of the tangent is
$$\frac{dy}{dx} = \cos x = \frac{\sqrt{3}}{2}$$
.

So the gradient of PN is
$$-\frac{2}{\sqrt{3}}$$

The coordinates of
$$P$$
 are $\left(\frac{\pi}{6}, \frac{1}{2}\right)$.

The equation of the line is
$$y - \frac{1}{2} = -\frac{2}{\sqrt{3}} \left(x - \frac{\pi}{6} \right)$$
.

V1 1112 Page **7** of **8**

(ii) When
$$y = 0$$
, $-\frac{1}{2} = -\frac{2}{\sqrt{3}} \left(x - \frac{\pi}{6} \right)$. $x = \frac{\sqrt{3}}{4} + \frac{\pi}{6}$.

(iii) The area is
$$\int_{\pi/6}^{\pi/6+\sqrt{3}/4} \sin x dx = \left[-\cos x\right]_{\pi/6}^{\pi/6+\sqrt{3}/4} = \cos\left(\frac{\pi}{6}\right) - \cos\left(\frac{\pi}{6} + \frac{\sqrt{3}}{4}\right) \approx 0.2897.$$

(iv) The triangle below the line *PN* has area
$$\frac{1}{2} \times \frac{\sqrt{3}}{4} \times \frac{1}{2} = \frac{\sqrt{3}}{16} \approx 0.1083$$
.

So the area between the line and the curve has area 0.1814 approximately. 1

The ratio is
$$\frac{0.1814}{0.1083} \approx 1.68$$
.

V1 1112 Page **8** of **8**