

THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY)

IFYHM001 Mathematics Part 1 Examination

Examination Session Semester One **Time Allowed** 2 hours 10 minutes (Including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A

Answer ALL questions. This section carries 40% of the exam marks.

SECTION B

Answer FOUR questions. This section carries 60% of the exam marks.

The marks for each part of the question are indicated in square brackets []

- Answers must not be written during the first 10 minutes.
- Write your Candidate Number clearly on the Answer Book in the space provided.
- Write your answers in the Answer Book provided. Additional sheets will be provided on request.
- Clearly write the number and parts of questions attempted at the start of each answer.
- No written material is allowed in the examination room.
- No mobile phones are allowed in the examination room.
- An approved calculator may be used in the examination.
- State the units where necessary.
- Where appropriate, working should be carried out to 4 significant figures and **answers given to 3 significant figures.**
- Full marks will only be given for full and detailed answers.
- Students will receive a formula book.

Section A Answer ALL questions. This section carries 40 marks.

Question A1

Find the equation of the line parallel to the line 4x-3y=5 which cuts the [3] *x*-axis when x=6.

Question A2

Find where the line 5x - 4y + 1 = 0 intersects the horizontal line through the point [3] (1,4).

Question A3

Multiply the matrices
$$\begin{pmatrix} 7 & 0 \\ -2 & 5 \end{pmatrix}$$
 and $\begin{pmatrix} 3 & -4 \\ 1 & 5 \end{pmatrix}$. [4]

Question A4

Solve the quadratic equation $6x^2 + x - 15 = 0$ for x. [4]

Question A5

Find the values of y for which $4y^2 + 7y > 2y + 6$. [4]

Question A6

Find the coefficient of x^4 in the expansion of $(2x-3)^6$. [3]

Question A7

Solve
$$\frac{\sqrt{x^3}}{\sqrt[3]{x^2}} = 243.$$
 [4]

Question A8

Solve the equation $e^{4x} + e^{2x} - 12 = 0$ for x giving your answer to 4 decimal places. [5]

Question A9

If
$$y = x^{-2} + 4e^x - 3\cos x$$
 find $\frac{dy}{dx}$ when $x = 2$ correct to 2 significant figures. [5]

Question A10

Find the value of
$$\int_{-1}^{3} (3e^x + 5x) dx$$
. [5]

Section B. Answer 4 questions. This section carries 60 marks.

Question B1

A manufacturer of canned tomatoes wants to minimise the amount of metal used to make his cans. These are to have a cylindrical shape of height h cm and radius r cm. The metal is of uniform thickness. The volume is to be 200 cm^3 .

(a) Show that the area of metal used is
$$A = 2\pi r^2 + 2\pi rh.$$
 [3]

- (b) State the volume in terms of r and h and hence find A in terms of r only. [4]
- (c) Find the value of r for which $\frac{dA}{dr} = 0$ and show that this gives a minimum [6] value of A.
- (d) What is the height of the can for this minimum value of A? [2]

Question B2

(a) Three sequences are given by the recurrence relations:

$$u_{n+1} = \frac{12}{u_n} + 1$$
, where $u_1 = 5$;

$$v_{n+1} = \frac{1}{4} (3v_n^2 - 2v_n - 8)$$
, where $v_1 = 2$;

$$w_{n+1} = w_n^2 - 2w_n + 3$$
, where $w_1 = 1$.

- (i) Show that one of these sequences is convergent, one is divergent and **[6]** one is periodic.
- (ii) Find the limit of the convergent sequence. [2]
- (b) The first, fourth and thirteenth terms of an arithmetic series are consecutive terms in a (non-constant) geometric series. The sixth term in the arithmetic series is 78.

Find the first term and the common difference of the arithmetic series. [7]

Question B3

(a)	(i)	For which values of x are the logarithms in the equation $\ln(10x-5) = 2\ln(3x-4)$ defined?	[2]
	(ii)	Solve the equation $\ln(10x-5) = 2\ln(3x-4)$ for x.	[5]

- (b) A function V(t) is known to have the form $V = Ae^{kt}$. When t = 7, V = 75 and when t = 12, V = 170.
 - (i) Find the values of k and A. [6]
 - (ii) Find the value of V when t = 15. [2]

[2]

Question B4

(a) Convert the angle 5.42 radians to degrees.

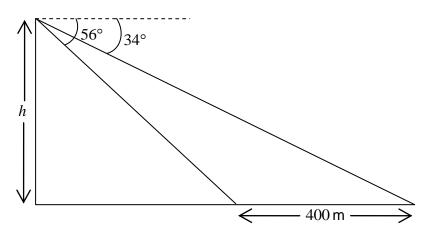
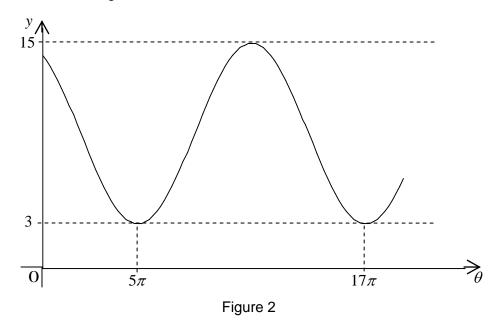



Figure 1

- (b) A man standing at the top of a cliff sees a lake in the plain below. The angle of declination of the nearer shore is 56° and that of the further shore is 34° , as shown in Figure 1. The distance across the lake is 400m. Find the height *h* of the cliff.
- (c) Find a formula in the form $y = A\sin(B\theta + C) + D$ which gives the graph as [5] shown in Figure 2.

Question B5

A curve has the equation $y = 2x - 7 \ln x - \frac{3}{x}$.

(a) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$. [3]

(b) Find the coordinates of the stationary points on the graph $y = 2x - 7 \ln x - \frac{3}{x}$. [4]

- (c) Find $\frac{d^2 y}{dx^2}$ at the stationary points and hence determine whether each [4] stationary point is a maximum or a minimum.
- (d) Find the equation of the tangent at x = 1. [4]

Section B continues on the next page.

Question B6

Figure 3 shows a sketch of the graph of $y = \sin x$.

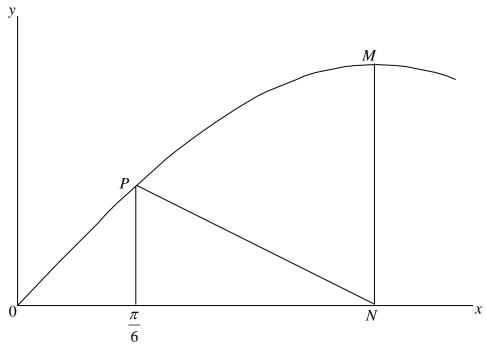


Figure 3

The point *P* lies on the curve and has *x*-coordinate equal to $\frac{\pi}{6}$. The normal to the curve at *P* cuts the *x*-axis at *N*.

(a) Find the equation of the line *PN*.

(b) Show that the *x*-coordinate of *N* is
$$\frac{\pi}{6} + \frac{\sqrt{3}}{4}$$
. [2]

(c) Find the area between the curve and the *x*-axis for *x* between $\frac{\pi}{6}$ and [4] $\frac{\pi}{6} + \frac{\sqrt{3}}{4}$.

(d) Show that the line PN divides the area found in (c) in the approximate ratio [4] 1:1.68.

[5]