

# THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY)

# IFYHM001 Mathematics Part 1 Examination

Examination Session Semester One **Time Allowed** 2 hours 10 minutes (Including 10 minutes reading time)

# **INSTRUCTIONS TO STUDENTS**

### SECTION A

Answer ALL questions. This section carries 40% of the exam marks.

### **SECTION B**

Answer FOUR questions. This section carries 60% of the exam marks.

### The marks for each part of the question are indicated in square brackets []

- Answers must not be written during the first 10 minutes.
- Write your Candidate Number clearly on the Answer Book in the space provided.
- Write your answers in the Answer Book provided. Additional sheets will be provided on request.
- Clearly write the number and parts of questions attempted at the start of each answer.
- No written material is allowed in the examination room.
- No mobile phones are allowed in the examination room.
- An approved calculator may be used in the examination.
- State the units where necessary.
- Where appropriate, working should be carried out to 4 significant figures and answers given to 3 significant figures.
- Full marks will only be given for full and detailed answers.
- Students will receive a formula book.

# Section A Answer ALL questions. This section carries 40 marks.

# **Question A1**

Find the equation of the line perpendicular to the line 3x - 4y = 5 and passing [4] through the point (6, -5).

# **Question A2**

Find the coordinates of the point where the line 4x - 5y = -3 intersects the [3] vertical line through the point (3,-2).

# **Question A3**

Evaluate 
$$\begin{pmatrix} 3 \\ -2 \end{pmatrix} + \begin{pmatrix} 2 & -5 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \end{pmatrix}$$
. [4]

# **Question A4**

Solve the quadratic equation  $6x^2 + x - 15 = 0$  for x. [4]

# **Question A5**

Find the set of values of y for which  $1 < 6 - 5y \le 26$ . [3]

# **Question A6**

Find the coefficient of  $x^4$  in the expansion of  $(2x-3)^6$ . [3]

# **Question A7**

Solve 
$$\frac{\sqrt{x^5}}{\sqrt[3]{x^7}} = 3$$
 for x. [4]

# **Question A8**

Solve the equation  $e^{4x} + e^{2x} - 12 = 0$  for x giving your answer to 4 decimal [5] places.

# **Question A9**

If 
$$y = e^{3x} - 3x^{-2} + 4\cos x$$
 find  $\frac{dy}{dx}$  when  $x = 1$  correct to 2 significant figures. [5]

# **Question A10**

Find the value of 
$$\int_{0}^{1} \left( \frac{1}{2x+3} - 2e^{x} \right) dx.$$
 [5]

# Section B Answer 4 questions. This section carries 60 marks.

# **Question B1**

(a) (i) Find the inverse, 
$$\mathbf{A}^{-1}$$
, of the matrix  $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 9 & 11 \end{pmatrix}$ . [4]

- (ii) Use  $\mathbf{A}^{-1}$  to solve the following simultaneous equations for x [3] and y: 2x + 3y = 69x + 11y = 17.
- (b) (i) Given that x-2 is a factor of  $f(x) = x^3 + px^2 + qx 20$ , [3] use the factor theorem to show that 2p + q = 6.
  - (ii) When f(x) is divided by x+3 the remainder is -50. [5] Find the values of p and q.

# **Question B2**

(a) Three sequences are given by the recurrence relations:

$$u_{n+1} = \frac{12}{u_n} + 1$$
, where  $u_1 = 5$ ;

$$v_{n+1} = \frac{1}{4} (3v_n^2 - 2v_n - 8)$$
, where  $v_1 = 2$ ;

$$w_{n+1} = w_n^2 - 2w_n + 3$$
, where  $w_1 = 1$ .

[6]

- (i) Show that one of these sequences is convergent, one is divergent and one is periodic.
- (ii) Find the limit of the convergent sequence. [2]
- (b) The first, fourth and thirteenth terms of an arithmetic series are consecutive terms in a (non-constant) geometric series. The sixth term in the arithmetic series is 78.

Find the first term and the common difference of the arithmetic series. [7]

# **Question B3**

| (a) | (i)                                                                                                                                                                          | For which values of x are the logarithms in the equation $\log_3(2x+1) = \log_9(3x+4)$ defined? | [2] |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----|
|     | (ii)                                                                                                                                                                         | Solve the equation $\log_3(2x+1) = \log_9(3x+4)$ for x.                                         | [5] |
| (b) | The temperature, $\theta^{\circ}$ C, of an oven is modelled by the equation $\theta = 18 + Ae^{-kt}$ , where <i>t</i> is the time in minutes after the oven is switched off. |                                                                                                 |     |
|     | The temperature was $218^{\circ}$ C when the oven was switched off.<br>The temperature was $138^{\circ}$ C after 8 minutes.                                                  |                                                                                                 |     |
|     | (i)                                                                                                                                                                          | Find the values of the constants $A$ and $k$ .                                                  | [5] |

(ii) Use the model to predict the temperature after 12 minutes. [3]

[8]

## **Question B4**

(b)





Figure 1

A man standing at the top of a cliff sees a lake on the plain below. The angle of declination of the nearer shore is  $52^{\circ}$  and that of the further shore is  $29^{\circ}$ , as shown in Figure 1. The distance across the lake is 200 m.

Find the height of the cliff.





Find a formula which gives the graph shown in Figure 2 in the form [5]  $y = A\sin(B\theta + C) + D$ .

# **Question B5**

A curve has the equation  $y = 3x^3 - 9x^2 + 5x + 4$ .

(i) Find 
$$\frac{dy}{dx}$$
 and  $\frac{d^2y}{dx^2}$ . [3]

(ii) Find the coordinates of the stationary points on the graph [4]  
$$y = 3x^3 - 9x^2 + 5x + 4$$
.

(iii) Find 
$$\frac{d^2 y}{dx^2}$$
 at the stationary points and hence determine whether each **[4]** stationary point is a maximum or a minimum.

(iv) Find the equation of the tangent at x = 1. [4]

# **Question B6**

(i) Sketch the graph of 
$$y = x^2 - 4x + 9$$
 for  $0 \le x \le 5$ . [3]

The point *P* lies on the curve and has *x*-coordinate equal to 1. The tangent to the curve at *P* cuts the *x*-axis at *N*.

| (ii)  | Find the equation of the line $PN$ .                                         | [4] |
|-------|------------------------------------------------------------------------------|-----|
| (iii) | Show that the $x$ -coordinate of $N$ is 4.                                   | [1] |
| (iv)  | Find the area between the curve and the $x$ -axis for $x$ between 1 and 4.   | [4] |
| (v)   | Find the ratio with which the line $PN$ divides the area found in part (iv). | [3] |

# This page is blank