NCUK

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYFM002 Further Mathematics End of Semester 1 Test

2016-17

Test Session Semester One **Time Allowed** 2 Hours 10 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 40 marks.

SECTION B Answer 4 questions ONLY. This section carries 60 marks.

The marks for each question are indicated in square brackets [].

- Answers must not be written during the first 10 minutes.
- A formula booklet and graph paper will be provided.
- An approved calculator may be used in the test.
- Show ALL workings in your answer booklet.
- Test materials must not be removed from the room.

DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE INVIGILATOR

Section A Answer ALL questions. This section carries 40 marks.

Question A1

The complex numbers z_1 and z_2 are given by $z_1 = 5 + 3i$ and $z_2 = 3 - i$. [4] Find the values of $|z_1 - z_2|$ and $z_1 \div z_2$.

Question A2

Matrix **M** is defined as
$$\mathbf{M} = \begin{bmatrix} 8 & 1 \\ 4 & -2 \end{bmatrix}$$
 and matrix **N** is defined as $\mathbf{N} = \begin{bmatrix} 4 & 5 \\ 2 & 3 \end{bmatrix}$

Question A3

Solve the inequality

$$4x + 3 \le \frac{7x + 12}{x + 1}$$
 [5]

Question A4

Find the value of

$$\sum_{r=17}^{30} (3r^3 + 7)$$
 [5]

All working must be shown.

Question A5

The roots of the quadratic equation $3x^2 + 6x - 7 = 0$ are α and β .

Find the quadratic equation with roots α^2 and β^2 .

Give your answer in the form $ax^2 + bx + c = 0$ where *a*, *b* and *c* are integers. [4]

Question A6

A particle is dropped from rest.

Find its speed after it has travelled 40 metres.

Find also the time that elapses between the particle being dropped and reaching [4] this speed, giving your answer to **3** significant figures.

In this question, 1 mark will be awarded for the correct use of significant figures.

Question A7

Show that

$$\cosh^2 x + \sinh^2 x = \cosh 2x$$
 [3]

Question A8

A curve has parametric equations $x = \tan \theta$ and $y = \cos^2 \theta$.

Write down the Cartesian equation of the curve in the form y = f(x). [3]

All working must be shown.

Question A9

An ellipse has Cartesian equation

$$\frac{x^2}{100} + \frac{y^2}{64} = 1.$$

Find its eccentricity, and explain why your answer is reasonable. [3]

Question A10

By differentiating a suitable number of times, find the first four terms of the

Maclaurin Series for e^{3x} . <u>All</u> working must be shown. [5]

Section B Answer <u>4</u> questions ONLY. This section carries 60 marks.

Question B1

a)	The complex number z_1 is defined as $z_1 = -\sqrt{8} + \sqrt{8} i$.			
	i.	Write down the modulus and argument of z_1 .	[2]	
	The	complex number z_2 has modulus 2 and argument $\frac{\pi}{3}$.		
	ii.	Write z_2 in Cartesian form.	[2]	
	iii.	Find $z_1 z_2$ giving your answer in <i>both</i> modulus argument form <i>and</i> in Cartesian form.	[3]	
b)	Sol	ve the equation $4w^4 + 15w^2 - 4 = 0$.	[4]	
c)	The locus of the complex number z is defined as $ z - 5i = 6$.			
	i.	Find the Cartesian equation of the locus of <i>z</i> .	[2]	
	ii.	Sketch this locus, showing clearly where it crosses the y – axis.	[2]	

Question B2

a)		$\int 1$	0	- 1	
	The matrix A is defined as $A =$	1	2	1	
		2	2	3	

Find the eigenvalues of matrix **A**. All working must be shown. [5]

- b) For each of the eigenvalues found in part a, find a corresponding eigenvector.
- c) Explain what is meant by an eigenvector. [1]
- d) Find **A**². [3]

Question B3

a) i. The curve *C* has equation $y = \frac{x-2}{x}$

Write down the equations of the asymptotes of curve C.[2]ii. Find the coordinates of the point where curve C crosses the x - axis.[1]iii. Show that curve C has no stationary points.[3]iv. Sketch curve C (this must not be done on graph paper).
Show clearly the asymptotes and the coordinates of the point where
the curve crosses the x - axis.[4]Solve the equation $3 \sinh^2 x - 25 \cosh x + 31 = 0$

Give your answers in terms of natural logarithms and in exact form. [5]

Show all working.

b)

Question B4

- a) A curve has parametric equations $x = \cos \theta$ and $y = \tan \theta$ ($\theta < \frac{\pi}{2}$)
 - i. Find an expression for $\frac{dy}{dx}$ in terms of θ . [3]
 - ii. State the value of θ when the curve is parallel to the y axis. [1]
 - iii. Find the equation of the normal to the curve when $\theta = \frac{\pi}{6}$. [3]
- b) Find the Cartesian equation of the curve. Give your answer in the form $\begin{bmatrix} 3 \end{bmatrix}$ y = f(x).
- c) The point *P* lies on the curve and *O* represents the origin.
 - i. Find the coordinates, in exact form, of point *P* when $\theta = \frac{\pi}{4}$. [1]
 - ii. Find the exact length of *OP*. [1]
 - iii. Find the angle between OP and the x axis. [1]

Point *X* lies at $(\sqrt{2}, 0)$.

iv. Find the area of triangle *POX*. [2]

Question B5

a) i. Show that

$$\sum_{r=1}^{n} r(r+7) = \frac{n(n+1)(n+11)}{3}$$
 [4]

- ii. Hence find the value of (21)(28) + 22(29) + ... + 35(42). [3]
- b) i. Use the Taylor expansion to express $sin(x \frac{\pi}{6})$ in ascending powers of x up to the term in x^3 . [5]
 - ii. Hence find an approximate value of $\sin 36^\circ$, giving your answer in terms of π . All working must be shown. [3]

Question B6

a)

Figure 1 shows two particles *P* and *Q*. *P* has mass 7 kg and is held on a long rough slope which is inclined at 30° to the horizontal. *Q* has mass 2 kg and is suspended freely from a light inextensible string which is connected to *P* over a smooth pulley. The coefficient of friction between *P* and the slope is $\frac{1}{10}$.

The system is released from rest and *P* moves down the slope.

Copy the diagram and show all the forces acting on <i>Q</i> , and all the forces	
acting on <i>P</i> which are parallel to and perpendicular to the slope.	[3]

b) Work out the frictional force acting on *P*. [2]

- c) Find the acceleration of the particles and the tension in the string. [5]
- d) After 3 seconds, the string breaks.

Find the speed of *P* after a <u>further</u> 2 seconds. [5]

This is the end of the test.