NCUK

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYFM002 Further Mathematics Examination 2017-18

Examination Session Semester Two **Time Allowed** 2 Hours 40 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 45 marks.

SECTION B Answer 4 questions ONLY. This section carries 80 marks.

The marks for each question are indicated in square brackets [].

- Answers must not be written during the first 10 minutes.
- A formula booklet and graph paper will be provided.
- An approved calculator may be used in the examination.
- Show **ALL** workings in your answer booklet.
- Examination materials must not be removed from the examination room.

DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE INVIGILATOR

Section A Answer ALL questions. This section carries 45 marks.

Question A1

The complex numbers z_1 and z_2 are defined as $z_1 = p - 2i$ and $z_2 = 2 + i$.

You are given $z_1 z_2 = 12 + i$.

Find:

a) the value of p. [2]

b) the argument of 12 + i. Give your answer to **2** significant figures. [3]

In this question, 1 mark will be given for the correct use of significant figures.

Question A2

Find the value of n if

$$\sum_{r=1}^{n} 3r = 513.$$
 [3]

Question A3

Solve the inequality		
	$x < \frac{12-x}{x}$	
	$x \sim x-5$	
Show all working		

Show all working.

Question A4

A shell is fired vertically into the air at 245 ms⁻¹.

Find:

a)	the time taken to reach its greatest height	[2]
----	---	-----

b) this greatest height. [2]

[5]

Question A5

A curve has parametric equations $x = t^2 + t$, $y = t^3$ $(t \ge 0)$

Evaluate

$$\int_{0}^{6} y \ dx.$$

Each stage of your working must be shown. An answer, even the correct one, will receive no marks if this working is not shown. [4]

Question A6

A hyperbola has eccentricity $1\frac{1}{4}$ and foci at (±15, 0).

Find its Cartesian equation.

Question A7

The power output of a crane is 7350 Watts. How long will it take the crane to lift a		
mass of 1500 kg through a vertical height of 15 metres?	[3]	

Question A8

By differentiating a suitable number of times, obtain the Maclaurin expansion for $\tan x$ up to the term in x^3 . All working must be shown. [3]

Question A9

The point *P* with position vector (3i - 2j + 4k) lies in a plane. The vector (2i + 5j - k) is perpendicular to the plane.

Find an equation of the plane in the form r.n = p. [4]

Question A10

Solve the differential equation

$$\frac{dy}{dx} + y \sec^2 x = e^{1 - \tan x}$$

given y = 1 when x = 0. Give your answer in the form y = f(x). [4]

[3]

Question A11

If $y = \sinh^{-1}x$, show that $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 1}}$.

Each stage of your working must be clearly shown.

Question A12

The mean mass of all apples is assumed to follow a Normal distribution but the standard deviation is unknown. A sample of 9 apples was selected. The mean mass was m grams and the standard deviation s grams.

The 90% confidence interval ranged from 103.8 to 116.2 grams.

Find the values of m and s.

[4]

Section B Answer <u>4</u> questions ONLY. This section carries 80 marks.

Question B1

a)

Figure 1

Figure 1 shows two particles, P and Q, which are connected by a light inextensible string over a smooth pulley. P has a mass of m kg and Q has a mass of km kg.

The system is released from rest and *P* moves downwards. The acceleration of the particles is 1.4 ms^{-2} .

i.	Find the value of k .	[4]	1
		L.	4

After 3 seconds the string breaks.

ii.	How far does Q continue to rise before coming to rest? assume that Q does not reach the pulley.)	(You may	[3]
iii.	Find the speed of P 4 seconds <u>after</u> the string breaks.		[2]

Parts b) and c) are on the next page.

b)

Figure 2 shows two spheres, *A* and *B*, approaching each other on a smooth surface. *A* has mass 5 kg and is travelling at 4 ms⁻¹. *B* has mass 4 kg and is travelling at 1 ms⁻¹.

The spheres collide. After the collision, sphere A moves at 0.6 ms⁻¹ in the same direction in which it was travelling before the collision. Sphere B moves in the opposite direction to which it was travelling before the collision.

i.	Find the speed of <i>B</i> after the collision.	[3]

- ii. Find the impulse which each sphere undergoes in the collision. [1]
- iii. After the collision, *B* hits a solid wall at point *W* and rebounds at 1.95 ms^{-1} . Find the coefficient of restitution between *B* and the wall. [2]

Figure 3 shows a particle, X, of mass 6 kg which is at rest at the top of a smooth slope. X is 10 metres vertically above ground level.

Particle *X* is released and it rolls down the slope to ground level at point *L*.

i. Find the speed of X when it reaches point L. [2]

Particle X then travels along a rough horizontal surface before coming to rest at point M which is 20 metres from point L.

ii. Find the coefficient of friction between *X* and the surface. [3]

V3 1718

Question B2

a) The matrix **M** is defined as
$$\mathbf{M} = \begin{bmatrix} -1 & 4 & 0 \\ 1 & 0 & -1 \\ 0 & -2 & -1 \end{bmatrix}$$

- ii. For each eigenvalue found in part i, find a corresponding eigenvector. [6]
- b) The second order differential equation is defined as

$$\frac{d^2y}{dx^2} - 4 \frac{dy}{dx} + 4y = 2x + 6$$

- i. Find the complementary function. [2]
- ii. Find a particular integral. [3]
- iii. Find the particular solution given that when x = 0, y = 5 and $\frac{dy}{dx} = 8$. [4]

Section B continues on the following page.

[3]

Question B3

ii.

a) Point $P(ap^2, 2ap)$ and point $Q(aq^2, 2aq)$ lie on the parabola with Cartesian equation $y^2 = 4ax$.

OP is perpendicular to OQ where point O is the origin.

i. Show that pq = k where k is a constant to be determined.

Show that the equation of the tangent to the parabola at
$$P$$
 is given by

$$py = x + ap^2 .$$
 [3]

iii. Write down the equation of the tangent at Q in terms of a and p. [2]

The tangents at P and Q meet at point R.

Show all working.

- iv. Find the x coordinate of point R. [3]
- b) A curve has parametric equations $x = \tan \theta$, $y = 2 \cos \theta$.
 - i. Find the equation of the normal to the curve when $\theta = \frac{\pi}{6}$. [4]

This normal cuts the x – axis at point X.

ii. Show that the directrix of the parabola with equation $y^2 = \frac{5}{\sqrt{3}}x$ also passes through point *X*.

Each stage of your working must be clearly shown. [5]

[5]

Question B4

a) Solve $8 \cosh x - 4 \sinh x = 7$.

Give your anwers in logarithmic form.

b) Evaluate

$$\int_{11}^{23} \frac{1}{\sqrt{(x^2 + 14x + 85)}} \, dx.$$

Give your answer as a single logarithm and in exact form.

All working must be shown. [4]

c) Show that

$$\int \operatorname{sech} x \, dx = 2 \tan^{-1}(e^x) + constant.$$
 [4]

d) A pyramid has a square base *OABC* and has vertices at O(0, 0, 0); A(15, -8, 0); B(23, 7, 0); C(8, 15, 0) and $D\left(11\frac{1}{2}, 3\frac{1}{2}, 18\right)$.

The volume of a pyramid is $\frac{1}{3}$ × area of base × vertical height.

By using the scalar triple product, find the volume of the pyramid. [3]

e) A particle, *P*, of mass 0.5 kg has position vector \boldsymbol{r} with respect to origin *O* given by

$$\boldsymbol{r} = \left(t^3 - \frac{3}{2}t^2\right)\boldsymbol{i} + \left(\frac{t^4}{4} - 2t^2 - 6t\right)\boldsymbol{j} + (4t^2 + 4t)\boldsymbol{k}$$

where i, j and k are mutually perpendicular unit vectors.

Find the magnitude of the momentum of *P* after 4 seconds.

Section B continues on the following page.

[4]

Question B5

a) For the complex number *z*, find the Cartesian equation of the locus which is defined by

$$\frac{|z+3-2i|}{|z-1+i|} = 1$$

Give your answer in the form ax + by + c = 0 where *a*, *b* and *c* are **[4]** integers.

- b) The function f(x) is defined as $f(x) = x^4 2x^3 + 14x^2 18x + 45$.
 - i. Divide f(x) by $(x^2 + 9)$. [3]
 - ii. Hence solve f(x) = 0. [3]
- c) Solve $w^5 = 243$.

Give your solutions in the form $re^{i\theta}$.

d) i. Prove that
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
 and $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$. [3]

ii. Hence prove that
$$\cos^2 x + \sin^2 x = 1$$
. [2]

[5]

[4]

Question B6

a) i. Expand and simplify
$$(\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)$$
. [2]

The quadratic equation $3x^2 - 12x + 1 = 0$ has roots α and β .

- ii. Find the quadratic equation with roots α^3 and β^3 . Give your answer in the form $ax^2 + bx + c = 0$ where *a*, *b* and *c* are integers. [5]
- b) i. Use the Taylor expansion to express $(x + \frac{1}{8})^{\frac{1}{3}}$ in ascending powers of x up to the term in x^2 .
 - ii. Hence find an approximate value of $\sqrt[3]{(\frac{9}{40})}$ giving your answer in the form $\frac{m}{n}$ where *m* and *n* are integers. [2]
- c) For the curve $y = \operatorname{sech} x$

i.	Write down the equation of its asymptote.	[1]
ii.	Find the coordinates where the curve crosses the y – axis.	[1]
iii.	Show that there is only one stationary value on the curve and state its coordinates.	[3]
iv.	Sketch the curve $y = \operatorname{sech} x$ (this must not be done on graph paper).	
	Show clearly the coordinates where it crosses the y – axis.	[2]

This is the end of the examination.

IFYFM002 Further Mathematics

Blank Page