NCUK

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYFM002 Further Mathematics Examination 2017-18

Examination Session Semester Two **Time Allowed** 2 Hours 40 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 45 marks.

SECTION B Answer 4 questions ONLY. This section carries 80 marks.

The marks for each question are indicated in square brackets [].

- Answers must not be written during the first 10 minutes.
- A formula booklet and graph paper will be provided.
- An approved calculator may be used in the examination.
- Show **ALL** workings in your answer booklet.
- Examination materials must not be removed from the examination room.

DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE INVIGILATOR

Section A Answer ALL questions. This section carries 45 marks.

Question A1

The complex number *z* is defined as z = p + 8i.

a) Find the values of p if
$$|z| = 17$$
. [2]

The complex number w is defined as w = 3 + 5i.

b) Find the argument of w. Give your answer to **2** significant figures. [3]

In this question, 1 mark will be awarded for the correct use of significant figures.

Question A2

	Г 4	-1]			Γ5	-4]
Matrices M and N are defined as $\mathbf{M} =$			and	N =		
	L3	2			L- 6	5]

Find **M^TN⁻¹**. Each stage of your working must be clearly shown. [4]

Question A3

Find the value of

$$\sum_{r=20}^{35} (3r^3 - 11).$$

Show all working. Give your answer **in full**, with **no** rounding off.

Question A4

Solve the inequality

$$x+5 < \frac{6x}{x-2}.$$
 [5]

Question A5

A ball is thrown vertically upwards at 12.25 ms⁻¹ and caught at the same level from which it was thrown.

For how long is the ball in the air?

[3]

[5]

Question A6

An ellipse has Cartesian equation

$$\frac{x^2}{144} + \frac{y^2}{81} = 1.$$

Find the coordinates of each focus and the equation of each directrix. [3]

Question A7

Solve the equation

$$\operatorname{coth}^2 x - 6 \operatorname{cosech} x + 7 \operatorname{cosech}^2 x = 0.$$

Give your answers in exact logarithmic form. All working must be shown. [4]

Question A8

A lorry of mass 4500 kg climbs up a smooth slope which is inclined at $\sin^{-1}\left(\frac{1}{15}\right)$ to the horizontal. The maximum speed of the lorry is 17 ms⁻¹.

Find the power output of the lorry.

Question A9

Point *A* lies at (0, 2, -2) and point *B* lies at (12, -8, -6). $\overrightarrow{OA} \times \overrightarrow{OB}$ where point *O* is the origin, and hence find the area of triangle *OAB*. [3]

Question A10

By differentiating a suitable number of times, find the Maclaurin expansion of

 $f(x) = (1 + x)^{\frac{1}{2}}$ up to the term in x^3 . Show all working. [3]

[3]

Question A11

Evaluate

$$\int_{0}^{17} \frac{1}{\sqrt{(x^2 + 6x - 7)}} \, dx.$$

Give your answer as a single logarithm in exact form. Show all working.

[4]

Question A12

The masses in grams of hens' eggs are assumed to follow a Normal distribution. The mean and standard deviation of the masses are unknown.

A sample of 12 eggs is selected. The mean is found to be 49 grams and the standard deviation is found to be 3 grams.

a) Find a 95% confidence interval for the mean mass of the eggs. [2]

The person who sells the eggs claims that the eggs have a mean mass of 50 grams.

b) Comment on this claim.

[1]

Section B Answer <u>4</u> questions ONLY. This section carries 80 marks.

Question B1

a)

Figure 1 shows two blocks P and Q. P has a mass of 2 kg and rests on a rough horizontal table top. The coefficient of friction between P and the table top is $\frac{1}{2}$. A light inextensible string is attached to P which passes over a smooth pulley. Another block, Q, of mass *M* kg hangs freely from its end.

The system is released from rest.

- i. Make a copy of the diagram and mark in all the forces acting on P and [2] all the forces acting on Q.
- ii. Show that the acceleration of the blocks, *a*, is given by

$$a = \frac{g(M-1)}{M+2}$$
 [3]

The tension in the string is 12.6 Newtons.

- iii. Find the value of *a*. [2]
- iv. Hence find the value of *M*. [2]

Parts b) and c) are on the next page.

Question B1 – (continued)

Figure 2

Figure 2 shows two spheres A and B approaching each other. A has mass 4 kg and is travelling at $u \text{ ms}^{-1}$. B has mass 5 kg and is travelling at $v \text{ ms}^{-1}$.

The spheres collide.

After the collision, <u>each</u> sphere moves off in the <u>opposite</u> direction to which it was travelling before colliding. A travels at $\frac{3}{4}$ ms⁻¹ and B travels at 1 ms⁻¹.

The coefficient of restitution between the spheres is $\frac{7}{20}$.

- i. Find the value of u and the value of v.
- ii. Find the loss of kinetic energy in the collision.

c)

Figure 3 shows a uniform beam XY of mass 28 kg and length 7 metres. It rests on two supports at points M and N. M is 1 metre from X and N is 2 metres from Y. A student of mass x kg stands at point K on the beam which is between points M and N and 0.5 metres from N.

The reaction force at point M is 20g Newtons.

Find the value of *x*.

[3]

[5]

[3]

Question B2

a) Matrix A is defined as
$$\mathbf{A} = \begin{bmatrix} 2 & -4 \\ -7 & 5 \end{bmatrix}$$

- i. Find the eigenvalues of matrix **A**. [3]
- ii. For each eigenvalue found in part i, find a corresponding eigenvector. [4]
- b) Find the value of *a* if the matrix

$$\begin{bmatrix} 0 & 2 & -3 \\ 6 & 1 & 0 \\ 0 & 3 & a \end{bmatrix}$$
 has determinant -6. [2]

c) The second order differential equation is defined as

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 5\sin x$$

- i. Find the complementary function. [2]
- ii. Find a particular integral. [5]
- iii. Find the particular solution, given that when x = 0, $y = \frac{1}{2}$ and $\frac{dy}{dx} = -\frac{13}{2}$. [4]

Question B3

Point P lies at $(ap^2, 2ap)$ and point Q lies at $(aq^2, 2aq)$ on the parabola a) with parametric equation $y^2 = 4ax$, where *p* and *q* are parameters.

i.	Find the equation of the chord PQ.	[2]
Ch	ord PQ and the directrix of the parabola meet on the x – axis.	
ii.	Show that $pq = k$ where k is a constant to be determined.	[2]
iii.	Derive the equation of the normal at point P in terms of a and p .	
	All working must be shown.	[3]

This normal, found in part iii, meets the x – axis at point R.

- Find the distance between point R and the focus of the parabola, giving iv. your answer in terms of a and p. [2]
- Curve C has parametric equations $x = \csc \theta$, $y = \cot \theta$ ($0 < \theta < \frac{\pi}{2}$). b)
 - i. Find the equation of the tangent to curve C when $\theta = \frac{\pi}{2}$. [3]
 - This tangent passes through the focus, with positive coordinates, of the ii. rectangular hyperbola with equation $xy = c^2$.

ſ

- Find the value of *c*. [3]
- iii. Find

$$\int_{1}^{\sqrt{3}} x^{-4} \, dy.$$

[5]

Give your answer in **exact** form.

Each stage of your working must be shown. An answer, even the correct one, will receive no marks if this working is not shown.

Question B4

a) A curve has equation $y = 3 \cosh\left(\frac{x}{3}\right)$.

Find the length of arc between $x = \ln 8$ and $x = \ln 27$.

Each stage of your working must be shown. An answer, even the correct [5] one, will receive no marks if this working is not shown.

- b) By using exponentials, show that if $y = \coth x$, $\frac{dy}{dx} = -\operatorname{cosech}^2 x$. [4]
- c) Plane Π_1 has equation r.(8i 9j + 12k) = 17. Plane Π_2 has equation r.(-6i + 2j + 3k) = 28.
 - i. Find the shortest distance from the origin to plane Π_1 . [3]
 - ii. Find the **obtuse** angle between plane Π_1 and plane Π_2 . [3]
- d) A particle starts from point O and its acceleration, a, after t seconds is given by

$$\boldsymbol{a} = 4t^3\boldsymbol{i} - 15t^2\boldsymbol{j} + 6t\boldsymbol{k}$$

where *i*, *j* and *k* are mutually perpendicular vectors.

- i. After 1 second the particle has velocity (2i 3j + k). Find an expression for the velocity in terms of *t*. [3]
- ii. Find the magnitude of the velocity after 2 seconds. [2]

[2]

Question B5

a) The complex numbers z_1 and z_2 are defined as $z_1 = p + qi$ and $z_2 = 1 + 2i$.

Find the value of p and the value of q if $z_1 \div z_2 = 3 + 5i$. [3]

b) Find the Cartesain equation of the locus of points represented by

$$|w + 1| = |w + i|$$

Give your answer in its simplest form.

c) Solve the equation

$$9x^4 + 13x^2 + 4 = 0.$$
 [4]

- d) Use De Moivre's Theorem to express sin 5θ in terms of sin θ.
 All working must be shown. [4]
- e) i. Solve the equation

$$z^3 = -27.$$

- Give your solutions in Cartesian form. [5]
- ii. Display your solutions on an Argand diagram. [2]

[3]

Question B6

i.

a) The quadratic equation $4x^2 + kx + 5 = 0$ has roots α and β .

Find the value of *k*, given that *k* is positive.

Your are given $\alpha^2 + \beta^2 = \frac{13}{2}$.

Find the quadratic equation with roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$. ii. Give your answer in the form $ax^2 + bx + c = 0$ where *a*, *b* and *c* are integers. [2] Use the Taylor expansion to express $tan(x + \frac{\pi}{4})$ in ascending powers of b) i. x up to the term in x^2 . Each stage of your working must be clearly shown. [4] ii. Hence find an approximate value of tan 47° giving your answer in terms [3] of π . The curve C has equation c) $y = \frac{-1}{1+x}.$

Write down the equations of the asymptotes of curve
$$C$$
.[2]State the coordinates where curve C crosses the y – axis.[1]Confirm that curve C has no stationary values.[2]Sketch curve C (this must not be done on graph paper).Show clearly the asymptotes and where the curve crosses the y – axis.[3]

This is the end of the examination.

i.

ii.

iii.

iv.

1

1

]

1

IFYFM002 Further Mathematics

Blank Page