

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYFM001 Further Mathematics Examination

Examination Session Semester Two Time Allowed 3 Hours 10 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 40% of the exam marks.

SECTION B Answer 4 questions. This section carries 60% of the exam marks.

The marks for each question are indicated in square brackets [].

Your School or College will provide a Formula Booklet.

- Answers must not be written during the first 10 minutes.
- Write your Candidate Number clearly on the answer books in the space provided.
- Write the answers in the answer books provided. Additional sheets will be provided on request.
- Write the section letter, the question number and numbers to parts of questions attempted clearly at the start of each answer.
- **No** written material is to be brought into the examination room.
- No mobile phones are allowed in the examination room.
- An approved calculator may be used in the examination.
- State the units where necessary.

Full marks will only be given for **full and detailed answers**

Section A

Answer ALL questions. This section carries 40 marks.

Question A1

Let z and w be complex numbers with z = 1 - 2i and w = 3 + i.

- a) Find the value of 2z 3w. [1]
- b) Write in the form a + bi where a and b are real numbers, [4]

$$\frac{i(w-z)}{w^*}$$

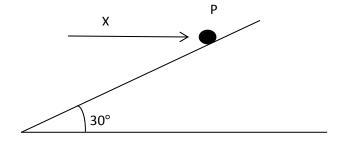
(w* is the complex conjugate of w).

Question A2

The matrix A is given by $\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$.

- a) Describe geometrically the transformation that A has on the x-y plane. [1]
- b) Describe geometrically the transformation that A^{-1} has on the x-y plane. [1]
- c) The transformation represented by the matrix *A* is then followed by a rotation of 60° anticlockwise about the origin. Find the matrix representing this composite transformation.

Question A3



A particle P of mass 3kg rests on a rough plane which is inclined to the horizontal at an angle of 30°. P is acted on by a horizontal force X which acts as shown in the diagram above. P is on the point of moving up the plane and the coefficient of friction between P and the plane is $\frac{1}{2}$.

- a) Copy the diagram and show all forces acting on the system. [1]
- b) Find the magnitude of the force X. [4]

Question A4

The variables x and y satisfy the differential equation

$$\frac{d^2y}{dx^2} + 4y = 8$$

Find the particular solution given that y = 0 and $\frac{dy}{dx} = 1$ when $x = \frac{\pi}{2}$.

Question A5

By differentiating a suitable number of times, find the first three terms of the Maclaurin series for $f(x) = e^{(x^2-4x)}$

[3]

Question A6

A particle P is moving in a straight line with simple harmonic motion with amplitude 4m. When the displacement of P is 3m its speed is 12ms⁻¹.

- a) Find the magnitude of the maximum velocity of P.
 - Find the magnitude of the maximum acceleration of P to 4 significant [3] figures.

In this question one mark will be awarded for the correct use of significant figures.

Question A7

- b) Hence solve the equation [4] $5cosh^2x 11sinhx 3 = 0,$ giving your answers in terms of natural logarithms.

Question A8

The curve C is given parametrically by the equations $x = e^{2t} + 3t$, $y = e^{-t}$

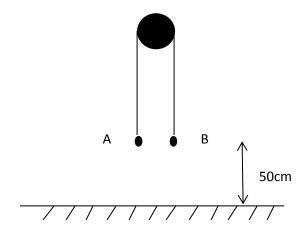
- a) Find the gradient of C at t = 0. [1]
- b) Show that the area under C from t = 0 to t = 1 is $2e 3e^{-1} + 1$ square [4] units.

Section B

Answer 4 questions. This section carries 60 marks.

Question B1

a)



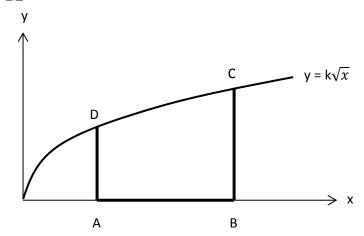
Two particles A, of mass 2kg, and B, of mass 3kg, are connected by a light inextensible string which passes over a smooth fixed pulley. Each particle is initially 50cm above a fixed horizontal plane. The system is released from rest and the effects of air resistance can be ignored. Take $g = 9.8 \text{ms}^{-2}$.

- i. Find the acceleration of the system. [3]
- ii. Find the tension in the string while the system is in motion. [2]
- iii. Particle B hits the plane and does not rebound. Find the maximum height that particle A reaches above the horizontal plane. Assume that A does not reach the pulley.
- b) A particle P, of mass 2kg, is moving in two dimensions and has velocity vector \mathbf{v} ms⁻¹ at time t seconds, given by

$$\mathbf{v} = (3t^2 - t)\mathbf{i} + 4t^3\mathbf{j} \qquad t \ge 0$$

where i and j are unit vectors in the direction of the positive x and y axes.

- i. Calculate the speed of P at t = 1. [1]
- ii. Given that at t = 0, the position vector of P is 3i 2j, find the position vector \mathbf{r} , of P, in terms of t.
- iii. Find the magnitude of the force acting on P when it crosses the *x* axis. [3]



A uniform lamina ABCD is formed from the curve $y = k\sqrt{x}$ (k a constant, k > 0), the x axis, and the lines x = 1 and x = 4 (see diagram above). Let the centre of mass of the lamina be at the point G (not shown on the diagram).

- a) Find the area of the lamina in terms of *k*. [2]
- b) Show that the distance of G from AD is $\frac{116}{70}$.
- Show that the distance of *G* from *AB* is $\frac{45k}{56}$.
- d) You are given that k = 5. The lamina is now suspended freely under gravity from the point C. Find the angle that CB makes with the vertical.
- e) The lamina is now placed on a rough inclined plane with the edge AB along the line of greatest slope of the plane and such that B is higher than A. The plane is initially inclined at a small angle θ . If θ is gradually increased and the lamina slides before it topples show that,

$$\mu$$
 < 0.412 (to 3 significant figures)

where μ is the coefficient of friction between the lamina and the plane.

$$\sum_{r=1}^{r=n} r(r^2 + 3r - 3) = \frac{n(n+1)(n^2 + 5n - 4)}{4}.$$

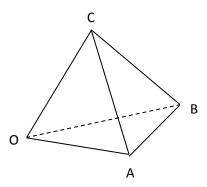
ii. Hence find the value of [2]
$$(11)(151) + (12)(177) + \dots + (29)(925) + (30)(987)$$

$$y = \sqrt{2x + 5} \qquad x \ge 0,$$

is rotated through 360° about the x axis between the lines x = 1 and x = 15. Show that the area of the surface formed is

$$\frac{2\pi}{3}$$
 (216 - $16\sqrt{2}$) square units.

a) The diagram shows a tetrahedron *OABC* where *O* is (0, 0, 0), *A* is (2, 1, 3), *B* is (3, -2, 2) and *C* is (4, 2, 3).



- i. Determine the area of the face ABC. [2]
- ii. Find the equation of the plane containing A, B and C in the form [3]

 $\mathbf{r}.\mathbf{n} = d$ where \mathbf{n} and d should be found.

- iii. Find the perpendicular distance of O from the plane containing A, B and C.
- iv. Hence or otherwise, calculate the volume of the tetrahedron. [2]
- b) The cubic equation $x^3 3x^2 5x + 3 = 0$ has roots α , β and γ .
 - i. Write down the values of $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$, and $\alpha\beta\gamma$. [2]
 - ii. Find the value of $\alpha^2 + \beta^2 + \gamma^2 + (\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$. [4]

a) The equation

 $4z^4 - 24z^3 + 89z^2 - 124z + 65 = 0$ has a complex root equal to 2 + 3i.

- i. Write down another root of the equation. [1]
- ii. Find the other two roots of the equation. [4]
- b) On separate Argand diagrams, sketch the following loci for a complex number z and describe the loci geometrically.

i.
$$|z+2-i|=3$$
 [3]

ii.
$$arg(z+3) = -\frac{\pi}{6}$$
 [3]

c) Let z = x + iy and suppose that z satisfies the equation [4]

$$\arg\frac{(z-3i)}{(z+3i)} = \frac{\pi}{4}.$$

Show that x and y must satisfy

$$x^2 + 6x + y^2 = 9$$
.

Question B6

A parabola has equation $y^2 = 12x$.

- a) Write down the coordinates of the focus F, of the parabola. [1]
- b) Write down the equation of the directrix of the parabola. [1]
- c) A point P on the parabola has coordinates $(3t^2, 6t)$ where t is a parameter. [3] Find the equation of the tangent to the parabola at P.
- d) A line is drawn parallel to the x axis through P and intersects the directrix at the point M. The tangent at P intersects the x axis at T. Show that the lines TM and FP are parallel.
- e) Show that the distances FP and PM are equal. [3]
- f) Given that at P, t = 2, find the area of triangle PFM. [3]