

THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY)

Further Mathematics

Mark Scheme

Level of accuracy: If a question specifies how many decimal places or significant figures are required, there is a mark for this. Otherwise accept any reasonable level of accuracy and alternative form.

Error carried forward: Where numerical errors have been made, students lose a mark/marks at that stage but may be awarded marks for using correct methods subsequently if the student demonstrates basic understanding.

Section A

(ii)
$$\overrightarrow{AB} = 1 + 2i - 3i = 1 - i$$
 1
 $|AB| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$ 1
 $\angle AOB = \arg A - \arg B = 90^\circ - \tan^{-1} 2 = 90^\circ - 63.4^\circ = 26.6^\circ (= 0.464 \text{ rad})$ 1

$$\mathbf{A2(i)} \quad \mathbf{A} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$$

(ii)
$$\mathbf{C} = \mathbf{B}\mathbf{A} = \begin{pmatrix} 0.28 & 0.96 \\ -0.96 & 0.28 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0.84 & -0.96 \\ -2.88 & -0.28 \end{pmatrix}$$
 M1A2

A3

Let the tensions in the strings be S and T respectively.

Resolving horizontally: $S \cos 25^{\circ} = T \cos 50^{\circ}$.

Resolving vertically: $S \sin 25^{\circ} + T \sin 50^{\circ} = 4g$

1 1

So
$$S \sin 25^{\circ} + \frac{S \cos 25^{\circ} \sin 50^{\circ}}{\cos 50^{\circ}} = 4g$$

 $S(\sin 25^{\circ}\cos 50^{\circ} + \cos 25^{\circ}\sin 50^{\circ}) = 4g\cos 50^{\circ}$

$$S = \frac{4g\cos 50^{\circ}}{\sin 75^{\circ}} = 26.1\text{N}, \qquad T = \frac{4g\cos 25^{\circ}}{\sin 75^{\circ}} = 36.8\text{N}$$
 M1A2

A4	The integrating factor is $e^{\int -2dx} = e^{-2x}$ Multiplying through by this we get	1
	$e^{-2x} \frac{dy}{dx} - 2e^{-2x} y = e^x$	
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathrm{e}^{-2x} y \right) = \mathrm{e}^x$	1
	Integrating this: $e^{-2x}y = e^x + c$ where c is a constant So $y = e^{3x} + ce^{2x}$	1
	From the initial condition $4 = 1 + c$, $c = 3$ Final solution is $y = e^{3x} + 3e^{2x}$	1
A5(i)	A vector perpendicular to Π is $3\mathbf{i} - 5\mathbf{j} + \mathbf{k}$	
(ii)	so the parametric equation of l is $\mathbf{r} = 7\mathbf{i} - 7\mathbf{j} + t(3\mathbf{i} - 5\mathbf{j} + \mathbf{k})$ Substituting in the equation of Π , $3(7+3t) - 5(-7-5t) + (t) + 14 = 0$ (9+25+1)t + 21 + 35 + 14 = 0	1
	35t + 70 = 0 $t = -2$	1
	The point B has position vector $\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$	1
(iii)	The vector \overrightarrow{AB} is $\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} - (7\mathbf{i} - 7\mathbf{j}) = -6\mathbf{i} + 10\mathbf{j} - 2\mathbf{k}$	1
	So the distance AB is $\sqrt{36+100+4} = \sqrt{140} \approx 11.8$	1
A6	Using the usual notation for simple harmonic motion: $v^2 = \omega^2 (a^2 - x^2)$ and $\ddot{x} = -\omega^2 x$,	
	the maximum speed occurs when $x = 0$, so $7^2 = \omega^2 a^2$. and the maximum acceleration occurs when $x = -a$,	1
	and so $15 = \omega^2 a$. Then the amplitude $a = \frac{\omega^2 a^2}{\omega^2 a} = \frac{7^2}{15} = \frac{49}{15} \approx 3.27 \text{ m}.$	1
	The frequency $\omega = \frac{\omega^2 a}{\omega a} = \frac{15}{7}$.	1
	The period is $\frac{2\pi}{\omega} = \frac{14\pi}{15} \approx 2.93 \text{s}.$	1
A7	$y = e^{2x} \cos x$ so when $x = 0$, $y = 1$	1
	$\frac{dy}{dx} = 2e^{2x}\cos x - e^{2x}\sin x \text{ so when } x = 0, \frac{dy}{dx} = 2$	1
	$\frac{d^2y}{dx^2} = 4e^{2x}\cos x - 2e^{2x}\sin x - 2e^{2x}\sin x - e^{2x}\cos x \text{ so when } x = 0, \frac{d^2y}{dx^2} = 3$	2
	The Maclaurin series is therefore $1 + 2x + \frac{3}{2}x^2 + \dots$	1

A8
$$x = 3\cosh\phi$$
 so $\frac{dx}{d\phi} = 3\sinh\phi$ and $y = 5\sinh\phi$ so $\frac{dy}{d\phi} = 5\cosh\phi$

At the point
$$P = 3 \cosh(\ln 2) = 3 \frac{e^{\ln 2} + e^{-\ln 2}}{2} = 3 \frac{2 + \frac{1}{2}}{2} = \frac{15}{4}$$

$$y = 5\sinh(\ln 2) = 5\frac{e^{\ln 2} - e^{-\ln 2}}{2} = 5\frac{2 - \frac{1}{2}}{2} = \frac{15}{4}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\phi}}{\frac{dx}{d\phi}} = \frac{5\cosh\phi}{3\sinh\phi} = \frac{25}{9}$$

So the equation of the tangent is
$$y - \frac{15}{4} = \frac{25}{9} \left(x - \frac{15}{4} \right)$$

Alternative equation: 25x - 9y = 60

Section B

B1(i)
$$a = \frac{dv}{dt}$$

$$= \frac{dv}{dx} \cdot \frac{dx}{dt}$$

$$= v \frac{dv}{dx}$$

$$= \frac{d}{dx} \left(\frac{1}{2}v^2\right)$$
1

(ii)
$$F = ma$$
, so $3a = 4 - \sin 5x$
 $3\frac{d}{dx}(\frac{1}{2}v^2) = 4 - \sin 5x$
 $d(1v^2) = 1$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{2} v^2 \right) = \frac{1}{3} \left(4 - \sin 5x \right)$$

$$\frac{1}{2}v^2 = \frac{1}{3}\left(4x + \frac{1}{5}\cos 5x\right) + c$$

When
$$x = 0$$
, $v = 3$, so $\frac{9}{2} = \frac{1}{15} + c$ $c = \frac{9}{2} - \frac{1}{15} = \frac{133}{30}$

$$v^2 = \frac{2}{15} (20x + \cos 5x) + \frac{133}{15}$$

When
$$x = 3$$
, $v = \sqrt{\frac{2}{15}(60 + \cos 15) + \frac{133}{15}} = 4.0946 \approx 4.09 \,\text{ms}^{-1}$

(iii) Before the collision the momentum is
$$3v$$
.

After the collision the momentum is $(3+7)v' = 10v'$

By conservation of momentum $3v = 10v'$

So after the collision $v' = \frac{3}{10}v \approx 1.23 \text{ ms}^{-1}$.

B2(i) Taking the x-axis as lying up the plane and the y-axis perpendicular to the plane, and letting the density of the lamina be $\rho \, \mathrm{kgm}^{-2}$, the mass of the larger rectangle is 0.24ρ and that of the smaller rectangle is 0.08ρ . 2

Thus the centre of gravity of the lamina is $G = (\bar{x}, \bar{y})$, where

$$\bar{x} = \frac{0.24\rho \times 0.2 + 0.08\rho \times 0.6}{0.24\rho + 0.08\rho} = 0.3 \,\mathrm{m}$$
 M1A1

$$\bar{x} = \frac{0.24\rho \times 0.2 + 0.08\rho \times 0.6}{0.24\rho + 0.08\rho} = 0.3 \text{ m}$$

$$\bar{y} = \frac{0.24\rho \times 0.3 + 0.08\rho \times 0.5}{0.24\rho + 0.08\rho} = 0.35 \text{ m}$$
M1A1

- The critical position for equilibrium is when G lies directly above P. (ii) 1 Then $\theta = \angle GPU = \tan^{-1} \left(\frac{\overline{x}}{\overline{y}} \right) = \tan^{-1} \left(\frac{0.3}{0.35} \right) = \tan^{-1} \left(\frac{6}{7} \right) = 40.6^{\circ}$ **M1A1**
- (iii) Diagram 1

At critical friction:

Resolving parallel to the plane: $\mu R = F = 0.32 \rho g \sin \theta$ 1

Resolving perpendicular to the plane: $R = 0.32 \rho g \cos \theta$ 1

$$\tan \theta = \frac{F}{R} = \mu$$
, so $\theta = \tan^{-1} \mu = \tan^{-1} (0.9) = 42.0^{\circ}$ M1A1

It will topple first. 1 (iv)

- B3(i) The ellipse is $\frac{x^2}{10^2} + \frac{y^2}{5^2} = 1$
 - Differentiating implicitly, $\frac{2x}{100} + \frac{2y}{25} \frac{dy}{dx} = 0$

So
$$\frac{dy}{dx} = -\frac{25x}{100y} = -\frac{25 \times 6}{100 \times 4} = -\frac{3}{8}$$

Therefore the equation of the tangent is $y = -\frac{3}{8}x + c$

where, since the tangent must pass through (6,4)

$$c = 4 + \frac{3}{8} \times 6 = 6\frac{1}{4}$$

So the equation is $y = -\frac{3}{8}x + \frac{25}{4}$

- or 3x + 8y = 50
- (ii) The tangents at the end of the major axes have equations $x = \pm 10$. 1 On the tangent in part (ii), when x = 10, $y = 2\frac{1}{2}$. This is M_2 . 2
 - When x = -10, y = 10. This is M_1 .
- (iii) The foci are at $(\pm ae,0)$ where $b^2 = a^2(1-e^2)$

So
$$e = \sqrt{\frac{a^2 - b^2}{a^2}} = \sqrt{\frac{100 - 25}{100}} = \sqrt{0.75} = \frac{\sqrt{3}}{2}$$

- So $ae = 5\sqrt{3}$, and $F = (5\sqrt{3}, 0)$ is a focus of the ellipse.
- (iv) The gradient of M_1F is $\frac{10-0}{-10-5\sqrt{3}}$
 - The gradient of M_2F is $\frac{2\frac{1}{2}-0}{10-5\sqrt{3}}$
 - The product of these is $\frac{25}{-100 + 75} = -1$
 - So the two lines are perpendicular.

B4(i)
$$\frac{w-u}{w-v} = \frac{2+3i-9i}{2+3i-3-5i}$$

$$= \frac{2-6i}{-1-2i}$$

$$= \frac{(2-6i)(-1+2i)}{(-1-2i)(-1+2i)}$$

$$= \frac{-2+4i+6i+12}{1+4}$$

$$= 2+2i$$
The argument of this is $\frac{\pi}{4}$

(ii)
$$\frac{z-u}{z-v} = \frac{x+iy-9i}{x+iy-3-5i} \\
= \frac{(x+i(y-9))(x-3-i(y-5))}{(x-3+i(y-5))(x-3-i(y-5))} \\
\frac{(x(x-3)+(y-9)(y-5))+i((y-9)(x-3)-x(y-5))}{(x-3)^2+(y-5)^2}$$
1

Since the argument of this is $\frac{\pi}{4}$ the real and imaginary parts must be equal. 1

So
$$x^2 - 3x + y^2 - 14y + 45 = xy - 3y - 9x + 27 - xy + 5x$$

This simplifies to
$$x^2 + y^2 + x - 11y + 18 = 0$$

(iii) Completing the squares,
$$(x + \frac{1}{2})^2 + (y - \frac{11}{2})^2 - \frac{1}{4} - \frac{121}{4} + 18 = 0$$
 1
$$(x + \frac{1}{2})^2 + (y - \frac{11}{2})^2 = \frac{1}{4} + \frac{121}{4} - 18 = \frac{1 + 121 - 72}{4} = \frac{50}{4} = 12\frac{1}{2}$$
 1

This is a circle centre
$$\left(-\frac{1}{2}, \frac{11}{2}\right)$$
 and radius $\sqrt{12\frac{1}{2}} = \frac{5\sqrt{2}}{2}$

B5(i)
$$y = \frac{2x^2 + 11x + 5}{x^2 - 4x + 3} = \frac{(2x+1)(x+5)}{(x-1)(x-3)}$$

The horizontal asymptotes correspond to the zeros of the denominator. 1 2

They are therefore
$$x = 1$$
 and $x = 3$.

$$y = \frac{2 + \frac{11}{x} + \frac{5}{x^2}}{1 - \frac{4}{x} + \frac{3}{x^2}} \to 2 \text{ as } x \to \pm \infty.$$

1 So y = 2 is the horizontal asymptote.

The curve cannot meet vertical asymptotes, so consider the horizontal one. (ii) 1

If
$$\frac{2x^2 + 11x + 5}{x^2 - 4x + 3} = 2$$
 then $2x^2 + 11x + 5 = 2x^2 - 8x + 6$

So
$$19x = 1$$
 $x = \frac{1}{19}$

(iii) When
$$x = 0$$
, $y = \frac{5}{3}$

When y = 0, (2x+1)(x+5) = 0

so
$$x = -\frac{1}{2}$$
 or $x = -5$

(iv) Sketch of graph showing features found above. Turning points and other features are not required. 3

1

B6a
$$\alpha + \beta + \gamma = -2$$

 $\alpha\beta + \alpha\gamma + \beta\gamma = -3$
 $\alpha\beta\gamma = -6$
So $\beta\gamma + \gamma\alpha + \alpha\beta = -3$
 $\beta\gamma\gamma\alpha + \beta\gamma\alpha\beta + \gamma\alpha\alpha\beta = \alpha\beta\gamma(\alpha + \beta + \gamma) = -6 \times (-2) = 12$
 $\beta\gamma\gamma\alpha\alpha\beta = (\alpha\beta\gamma)^2 = 36$
So the required cubic equation is $x^3 + 3x^2 + 12x - 36 = 0$

b(i)
$$x^2 + 12x + 11 = (x+6)^2 - 25$$
 M1A1

(ii)
$$\int_{0}^{4} \frac{\mathrm{d}x}{\sqrt{x^2 + 12x + 11}} = \int_{0}^{4} \frac{\mathrm{d}x}{\sqrt{(x+6)^2 - 25}}$$

Let
$$u = x + 6$$
. Then $\frac{du}{dx} = 1$.

When
$$x = 0, u = 6$$

When
$$x = 4$$
, $u = 10$

The integral =
$$\int_{6}^{10} \frac{du}{\sqrt{u^2 - 5^2}}$$

$$= \left[\cosh^{-1}\frac{u}{5}\right]_{6}^{10} = \cosh^{-1}2 - \cosh^{-1}\frac{6}{5}$$

$$= \ln\left(2 + \sqrt{4 - 1}\right) - \ln\left(\frac{6}{5} + \sqrt{\frac{36}{25} - 1}\right)$$

$$= \ln\left(2 + \sqrt{3}\right) - \ln\left(\frac{6 + \sqrt{11}}{5}\right) = \ln\left(\frac{10 + 5\sqrt{3}}{6 + \sqrt{11}}\right)$$