

THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY)

Further Mathematics Examination

Examination Session Semester Two **Time Allowed** 3 hours 10 minutes (Including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A

Answer ALL questions. This section carries 40% of the exam marks.

SECTION B

Answer FOUR questions. This section carries 60% of the exam marks.

The marks for each part of the question are indicated in square brackets []

- Answers must not be written during the first 10 minutes.
- Write your Candidate Number clearly on the Answer Book in the space provided.
- Write your answers in the Answer Book provided. Additional sheets will be provided on request.
- Clearly write the number and parts of questions attempted at the start of each answer.
- **No** written material is allowed in the examination room.
- No mobile phones are allowed in the examination room.
- An approved calculator may be used in the examination.
- State the units where necessary.
- Where appropriate, working should be carried out to 4 significant figures and **answers given to 3 significant figures**.
- Full marks will only be given for full and detailed answers.
- Students will receive a formula book.

Section A Answer ALL questions. This section carries 40 marks.

Question A1

(i)	Show on an Argand diagram the points A and B representing the complex numbers $3i$ and $1+2i$ respectively.	[2]	
(ii)	Find the distance AB and the angle AOB where O is the origin.	[3]	
Question A2			
	ransformation represented by the matrix A is a stretch by a factor of 3 e x -direction and a reflection in the x -axis.		
(i)	Write down the matrix A .	[2]	
(ii)	The transformation represented by the matrix A is then followed by the rotation represented by the matrix		
	$B = \begin{pmatrix} 0.28 & 0.96 \\ 0.06 & 0.20 \end{pmatrix}$		

$$B = \begin{pmatrix} 0.28 & 0.96 \\ -0.96 & 0.28 \end{pmatrix}$$

[3] Find the matrix C representing the composite transformation.

Question A3

A particle of mass 4 kg is suspended in equilibrium by two light inextensible strings which make angles of 25° and 50° to the horizontal.

Find the tension in the strings.	[5]

Question A4

Solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - 2y = \mathrm{e}^{3x}$$

completely, given that y = 4 when x = 0.

[5]

Question A5

The plane Π has equation 3x - 5y + z + 14 = 0.

Let A be the point with position vector $7\mathbf{i} - 7\mathbf{j}$.

(i)	Find the equation of the line l through A which is perpendicular to the plane $\Pi.$	[1]
(ii)	Find the point of intersection of the line l and the plane Π .	[2]

(iii) Find the distance AB.

Question A6

A particle is moving in a straight line with simple harmonic motion. Its maximum speed is 7 ms^{-1} and its maximum acceleration is 15 ms^{-2} .

Calculate the amplitude and period of the oscillation. [5]

Question A7

Find the first three terms of the Maclaurin series for $y = e^{2x} \cos x$. [5]

Question A8

A curve is defined parametrically by the equations $x = 3\cosh\phi$ and $y = 5\sinh\phi$.

Let *P* be the point where $\phi = \ln 2$.

Find the equation of the tangent to the curve at the point P.

[5]

[2]

Section B Answer 4 questions. This section carries 60 marks.

Question B1

A particle P moves along the x-axis with velocity v and acceleration a.

(i) Show that
$$a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$$
. [4]

(ii) The particle *P* has mass 3 kg and the force acting on it is $(4 - \sin 5x)$ N along the positive *x*-axis. The particle moves through the origin *O* with speed 3 ms^{-1} .

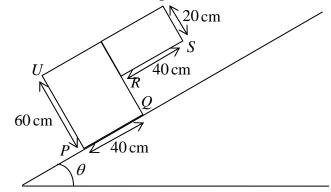
Calculate the speed of the particle when x = 3 m. [7]

(iii) When x = 3 m the particle collides with a stationary particle of mass 7 kg which is free to move along the *x*-axis. After the collision the particles combine and move as a single body.

Find the speed of the combined particle after the collision. [4]

Question B2

A uniform lamina is placed on a rough plane inclined at an angle θ to the horizontal as shown in Figure 1. $$_T$



- (i) Find the distances of the centre of mass of the lamina from PU and [6] PQ.
- (ii) Determine the maximum value of θ for the lamina to remain in [3] equilibrium in this position.
- (iii) Let the coefficient of friction between the lamina and the plane be 0.9.

Draw a diagram showing all the forces acting on the lamina and find **[5]** the value of θ at which the lamina is just about to slip.

(iv) From your answers to parts (ii) and (iii), state which occurs first, [1] slipping or toppling.

Question B3

Let *P* be the point (6,4) on the ellipse
$$\frac{x^2}{10^2} + \frac{y^2}{5^2} = 1$$
.

(ii)	Let the tangent meet the tangents at the ends of the major axis at	
	M_1 and M_2 respectively.	
	Find the coordinates of M_1 and M_2 .	[5]

(iii) Show that
$$F = (5\sqrt{3}, 0)$$
 is a focus of the ellipse. [2]

(iv) Show that
$$M_1F$$
 and M_2F are perpendicular to each other. [4]

Question B4

Let u = 9i, v = 3 + 5i and w = 2 + 3i.

(i) Given that
$$\arg\left(\frac{w-u}{w-v}\right) = k$$
, find the exact value of k. [6]

(ii) If
$$z = x + iy$$
 is a complex number such that $\arg\left(\frac{z-u}{z-v}\right) = k$, show [5]

that x and y satisfy the equation $x^2 + y^2 + x - 11y + 18 = 0$.

(iii) Hence show that the locus of z lies on a circle and find its centre [4] and radius.

Question B5

The curve *C* has equation $y = \frac{2x^2 + 11x + 5}{x^2 - 4x + 3}$.

(i)	Find the equations of the vertical and horizontal asymptotes.	[6]
(ii)	One of the asymptotes has a point in common with ${\it C}$. Determine the coordinates of this point.	[3]
(iii)	Find where the curve crosses the coordinate axes.	[3]
(iv)	Sketch the graph of the curve $ C$.	[3]

Question B6

(a) Given that α , β and γ are the roots of $x^3 + 2x^2 - 3x + 6 = 0$ find **[7]** the cubic equation whose roots are $\beta\gamma$, $\gamma\alpha$ and $\alpha\beta$.

(b) (i) Express
$$x^2 + 12x + 11$$
 in the form $(x + p)^2 - q$. [2]

(ii) Hence show that
$$\int_{0}^{4} \frac{\mathrm{d}x}{\sqrt{x^{2} + 12x + 11}} = \ln\left(\frac{10 + 5\sqrt{3}}{6 + \sqrt{11}}\right).$$
 [6]

This page is blank

This page is blank