

THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY)

Further Mathematics

Examination Session Summer 2009 **Time Allowed** 3 hours 10 minutes (Including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A

Answer ALL questions. This section carries 40% of the exam marks.

SECTION B

Answer FOUR questions. This section carries 60% of the exam marks.

The marks for each part of the question are indicated in square brackets [].

- No answers must be written during the first 10 minutes.
- Write your Candidate Number clearly on the Answer Book in the space provided.
- Write your answers in the Answer Book provided. Additional sheets will be provided on request.
- Clearly write the number and parts of questions attempted at the start of each answer.
- No written material is allowed in the examination room.
- No mobile phones are allowed in the examination room.
- An approved calculator may be used in the examination.
- State the units where necessary.
- Where appropriate, working should be carried out to 4 significant figures and **answers given to 3 significant figures**.
- Full marks will only be given for full and detailed answers.
- Students will receive a formula book.

Section A Answer ALL questions. This section carries 40 marks.

Question A1

Let
$$z = 4 - 5i$$
 and $w = 3 - i$.

(i) Find the value of z - 3w. [1]

(ii) Express
$$\frac{w}{w+z^*}$$
 in the form $a+bi$, where z^* is the complex conjugate of [4]

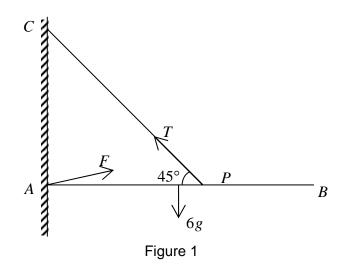
Question A2

Let the matrix
$$\mathbf{B} = \begin{pmatrix} -1 & -6 & -6 \\ -3 & -4 & -6 \\ 3 & 6 & 8 \end{pmatrix}$$
.

(i)	Find \mathbf{B}^2 .	[2]
(ii)	Hence show that ${f B}^2-{f B}$ is a multiple of the identity matrix, ${f I}$.	[1]
(iii)	Hence find \mathbf{B}^{-1} .	[2]

Question A3

A uniform rod, AB, of length 80 cm and mass 6 kg, is freely hinged at a point A on a vertical wall. The rod is held in equilibrium horizontally by a light inextensible string attached to the wall at C and to a point P on the rod 50 cm from A as shown in Figure 1. The string makes an angle of 45° with the horizontal.



[2]

[5]

- (i) Find the tension in the string.
- (ii) Show that the magnitude of the reaction force, *F* , at the hinge *A* is $\begin{bmatrix} 3 \end{bmatrix}$ $\frac{6\sqrt{17}}{5}$ g.

Question A4

Solve the differential equation

$$\frac{d^2 y}{dt^2} + 7\frac{dy}{dt} + 10y = 50$$

completely, given that y = 9 and $\frac{dy}{dt} = 1$ when t = 0.

Question A5

The lines l_1 and l_2 have equations

*l*₁:
$$\mathbf{r} = (-1, 4, 6) + s(-2, 1, 5)$$

*l*₂: $\mathbf{r} = (4, -1, 0) + t(1, -3, 4)$

- (i) Show that l_1 and l_2 intersect and find the coordinates of the point of **[3]** intersection.
- (ii) Find the Cartesian equation of the plane in which l_1 and l_2 lie. [2]

Question A6

A particle of mass 1.5 kg is attached to the end B of a light inelastic string AB of length 2.5 m, the other end of which is fixed at A. The particle moves in a horizontal circle whose centre is vertically below A with a constant angular speed. The particle takes 1.5 s to complete one revolution.

Let the acceleration due to gravity, g , be 9.8 ms $^{-2}$, and take π as 3.14 .

- (i) Calculate the tension in the string. [2]
- (ii) Find the radius of the circular path of *B*. [3]

Question A7

(i) Express
$$\frac{1}{(r+1)(r+2)}$$
 in the form $\frac{A}{r+1} + \frac{B}{r+2}$. [2]

(ii) Hence find the exact value of
$$\sum_{r=5}^{12} \frac{1}{(r+1)(r+2)}$$
. [3]

Question A8

The curve, *C*, has equation $y = 17 \cosh x + 15 \sinh x$.

(i)	Find the exact value of the x -coordinate of the turning point on C in terms of a natural logarithm.	[3]
(ii)	Hence find the exact value of y .	[1]
(iii)	Determine the nature of the turning point.	[1]

Section B Answer 4 questions. This section carries 60 marks.

Question B1

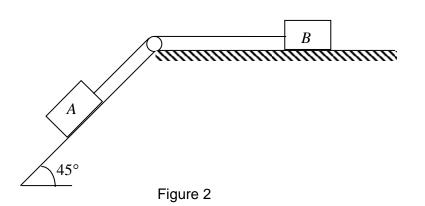


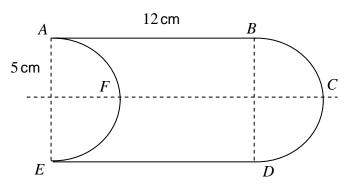
Figure 2 shows two particles *A* and *B*, of mass 5 kg and 4 kg respectively. They are connected by a light inextensible string which passes over a light smooth pulley *P*. Particle *A* rests on a smooth plane inclined at an angle of 45° to the horizontal. Particle *B* rests on a rough horizontal plane. The string is parallel to the line of greatest slope of the inclined plane. Let the acceleration due to gravity, *g* be 9.8 ms^{-2} .

(i)	Draw a diagram to show the forces acting on the bodies A and B .	[2]
(ii)	If the coefficient of friction, μ , is 0.4 , calculate the acceleration of body B .	[5]
(iii)	Find in Newtons, the tension in the string.	[1]

- (iv) After travelling from rest for 1.5 s, the string breaks. Calculate the time [4] taken for B to come to rest given that it does not reach the pulley.
- (v) What is the total distance that B travels?

Question B2

Use integration to find the centre of mass of a uniform semicircular [6]
 lamina of radius 5 cm. You may use the formula for the area of a circle.



[3]

- (ii) A semicircular section AFE is removed from a uniform rectangular [3] lamina ABDE and placed at BCD to form the uniform lamina ABCDEF as shown in Figure 3. If the semicircles have radii 5 cm find the position of the centre of mass of the lamina.
- (iii) The lamina ABCDEF is freely suspended from A. Find the angle AB [2] makes with the vertical.
- (iv) A particle of mass μm , where m is the mass of the lamina, is added at **[4]** *E*. Find the value of μ so that *AB* makes an angle of 45° with the vertical.

Question B3

(i)	Show that the point $P = (4\cos t, 5\sin t)$) lies on the ellipse $\frac{x^2}{16} + \frac{y^2}{25} = 1$.	[1]
-----	--	---	-----

- (ii) Find the equation of the tangent at *P*. [4]
- (iii) Find the equation of the normal at *P*. [3]
- (iv) The normal meets the axes at the points Q and R. Lines are drawn [2] parallel to the axes through the points Q and R; these lines meet at the point V. Find the coordinates of V.

(v) Find the equation of the locus of V as t varies in the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. [3]

(vi) Find the eccentricity and foci of the locus of V. [2]

Question B4

(a)	(i)	In an Argand diagram, the point <i>P</i> represents the complex number <i>z</i> , where $z = x + iy$. Given that $z - 8 = \lambda i(z - 2)$, where λ is a real parameter, show that as λ varies the locus of <i>P</i> is	[7]
		a circle, and find its centre and radius.	
	(11)	If in (i) above $z = u(1+3i)$ where u is real prove that there is	Γ41

- (ii) If in (i) above $z = \mu(4+3i)$, where μ is real, prove that there is **L**4 J only one possible position for the point *P* and find its coordinates.
- (b) Use De Moivre's theorem to solve $(z-1)^3 = 8$ for z. [4]

Question B5

- (a) The roots of the cubic $x^3 + bx^2 + cx + d$ are α , β and γ .
 - (i) Show that $\alpha^3 + \beta^3 + \gamma^3 = -b^3 + 3bc 3d$. [5]

(ii) Given the cubic
$$x^3 + 2x^2 - 4x + 8$$
 evaluate

$$\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$$
[4]

(b) Differentiate $f(x) = e^{-x} \cos x$ a suitable number of times and hence find [6] the first three non-zero terms of its Maclaurin series.

Question B6

(a)	(i)	Express $4x^2 + 12x + 13$ in the form	$(px+q)^2 + r$.	[2]
()	(1)		$(P \cdots P) \cdots P$	

(ii) Hence find
$$\int_{-3/2}^{3/8} \frac{dx}{\sqrt{4x^2 + 12x + 13}}$$
 in terms of a natural logarithm. [8]

(b) Find the surface area of a parabolic mirror obtained by rotating the **[5]** parabola $x = 4t^2$, y = 8t from (0,0) to (4,8) about the *x*-axis, giving your answer correct to one decimal place.