NCUK

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYME002 Mathematics Engineering Examination 2017-18

Examination Session Semester Two **Time Allowed** 2 Hours 40 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 45 marks.

SECTION B Answer 4 questions ONLY. This section carries 80 marks.

The marks for each question are indicated in square brackets [].

- Answers must not be written during the first 10 minutes.
- A formula booklet and graph paper will be provided.
- An approved calculator may be used in the examination.
- Show **ALL** workings in your answer booklet.
- Examination materials must not be removed from the examination room.

DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE INVIGILATOR

Section A Answer ALL questions. This section carries 45 marks.

Question A1

Solve the equations
$$3x - 2y = 8$$

 $6x + 5y = -11$ [4]

Question A2

The probability that it rains on any given day is 0.7

Two consecutive days are chosen at random.

Find the probability that it <u>either</u> rains on <u>both</u> days, <u>or</u> rains on <u>neither</u> day. [3]

Question A3

When $3x^2 + kx - 2$ is divided by (x + 2) the remainder is twice the remainder when $4x^2 - 5x - 3k$ is divided by (x + 3).

Use the Remainder Theorem to find the value of *k*. [4]

Question A4

Expand	$(4-6x)^4$. Give your answer in its simplest form.	[4]
--------	------------	--	-----

Question A5

Solve $7^{(4x-3)} = 33$. Give your answer to **3** significant figures.

In this question, 1 mark will be given for the correct use of significant figures. [4]

Question A6

Solve $\sin^2 \theta = \frac{3}{4}$ $(0 \le \theta \le 2\pi)$.

Give your answers as exact multiples of π . [3]

Question A7

A curve has equation $y = \cos^5 x$.

Find
$$\frac{dy}{dx}$$
 and hence find the gradient of the tangent at $x = \frac{\pi}{6}$. [4]

Question A8

Find the values of *a* if

$$\int_{0}^{a} (6x - 4) \, dx = 15.$$
 [4]

Question A9

The function f(x) is defined as $f(x) = x^2 - 68$.

Starting with x = 8, apply the Newton-Raphson method once to obtain a better approximation to the equation f(x) = 0. [3]

Question A10

Function g(x) is defined as $g(x) = \tan x$ ($0^{\circ} \le x < 90^{\circ}$).

Function h(x) is defined as $h(x) = \cos 2x$ ($0^{\circ} \le x < 90^{\circ}$)

Find the **exact** value of $g\left(h^{-1}\left(\frac{1}{2}\right)\right)$.

Question A11

The masses of blocks of concrete are assumed to follow a Normal distribution with mean 120 kg and standard deviation 10 kg.

33% of blocks are above x kg.

Find the value of *x*.

Question A12

Solve the differential equation

$$\frac{dy}{dx} = \frac{y}{x+5}$$

subject to y = 18 when x = 1.

Give your answer in the form y = f(x) which must contain no logarithms. [5]

[4]

[3]

Section B Answer <u>4</u> questions ONLY. This section carries 80 marks.

Question B1

a)	i.	Solve the inequality $\frac{7x-11}{5} > 2$	[1]
	ii.	Solve the inequality $2x^2 - 3x - 44 \le 0$.	[4]
	iii.	List the integers which satisfy both $\frac{7x - 11}{5} > 2$ and $2x^2 - 3x - 44 \le 0$.	[1]
b)	i.	Divide $3x^3 - 4x^2 - 59x + 20$ by $(3x - 1)$.	[3]
	ii.	Hence factorise $3x^3 - 4x^2 - 59x + 20$ completely.	[1]
c)	An	arithmetic series has common difference 11 and the 19 th term is 36.	
	i.	Find the first term.	[2]
	ii.	Find the sum of the first 40 terms.	[3]
d)	A g	eometric series has common ratio 1.5 and the 11 th term is 236196.	
	i.	Find the first term.	[2]
	ii.	Find the sum of the first 8 terms.	
		Give the <i>full</i> answer here, with no rounding off.	[2]
	iii.	Explain why it is not possible to find the sum to infinity.	[1]

a) A small furnace is heated up and then allowed to cool. The temperature, $\theta^{\circ}C$, after *t* hours from when the furnace started to cool is given by the formula

$$\theta = 1500e^{-0.04t} + 20$$

i.	State the temperature of the furnace when cooling started.	[1]
ii.	Find the temperature after 3 hours.	[2]
iii.	Find $\frac{d\theta}{dt}$.	[1]

- iv. After how many hours is the rate of cooling 47.2 °C per hour? [3]
- b) Solve the equation

$$2\log_8 x - \log_8(x^2 - 3x) = \frac{2}{3}$$
 (x > 3)
All working must be shown. [4]

c)

Figure 1 shows the quadrilateral PQRS which is made up of acute-angled triangles PQR and PRS.

PS = 68 cm, PR = 60 cm and SR = $\sqrt{4384}$ cm. Angle SPR = θ° and angle RPQ = 30°.

- i. Find the value of $\cos \theta$. Give your answer in the form $\frac{m}{n}$ where *m* and *n* are integers. [3]
- ii. <u>Without</u> finding the size of θ , show that $\sin \theta = \frac{15}{17}$. Show all working. [2]

The area of triangle PRS is 3 times larger than the area of triangle PQR.

iii.	Find PQ.	[2]
iv.	Find angle PRS.	[2]

a)

Figure 2 shows a square sheet of metal of side 60 cm. Four squares x cm by x cm are cut from each corner. The sides are then folded up to make a tray.

i. Show that the volume, *V*, of the tray is given by

$$V = 3600x - 240x^2 + 4x^3$$
 [2]

ii. Use $\frac{dV}{dx}$ to find the stationary values of x.

All working must be shown.

[4]

iii. For each stationary value, determine if it is a maximum or a minimum. [4]

All working must be shown. Your answers must be backed up by sufficient evidence.

iv. Find the maximum volume. [2]

Part b) is on the next page.

Figure 3

Figure 3 shows the curve $y = -x^2 + 8x - 7$ and line *l* which is a normal to the curve at the point (3, 8). The curve $y = -x^2 + 8x - 7$ meets the *x* - axis at (1, 0) and (7, 0).

- i. Find the equation of line *l*. Give your answer in the form y = mx + c. [3]
- ii. Find the area, which is shaded on the diagram, that is bounded by the x and y axes, line *l* and the curve $y = -x^2 + 8x 7$. [5]

Figure 4

Figure 4 shows the curve y = f(x + 3). The curve crosses the x – axis at (-3, 0) and (6, 0); and the y – axis at (0, -6). There is a stationary value at (3, -8).

Draw a sketch of the graph y = f(x). On your sketch, show clearly the coordinates where the curve crosses the x – axis and the y – axis; and also the coordinates of any stationary values. [3]

b) Function
$$g(x)$$
 is defined as $g(x) = \frac{e^{3x} + 1}{2}$ $(x > 0)$

- i. State the range of g(x). [1]
- ii. Find $g^{-1}\left(\frac{9}{2}\right)$. Give your answer in the form $\ln k$ where k is an integer. [3]
- iii. Function h(x) is defined as $h(x) = \frac{5x 7}{12}$ $(-\infty < x < \infty)$ Solve the equation $h(x) = h^{-1}(x)$. [3]

Parts c) and d) are on the next page.

Question B4 - (continued)

c) i. Prove that
$$\tan \theta + \cot \theta = \frac{2}{\sin 2\theta}$$
.

Each stage of your working must be clearly shown. [4]

- ii. Hence solve the equation $\tan \theta + \cot \theta = -4$ ($0^\circ \le \theta \le 180^\circ$) [4]
- d) Angle *A* is obtuse and $\sin A = \frac{3}{5}$.

<u>Without</u> finding the size of angle *A*, write down each of the following, giving your answers in the form $\frac{p}{q}$ where *p* and *q* are integers.

ii.
$$\sec^2 A$$
 [1]

a)	Line	Line l_1 has equation $\mathbf{r} = (3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) + \lambda(2\mathbf{i} - 3\mathbf{k})$ where λ is a scalar.			
	Line	\boldsymbol{k}_{2} has equation $\boldsymbol{r} = (-2\boldsymbol{i} + 4\boldsymbol{j} - \boldsymbol{k}) + \mu(3\boldsymbol{i} - 2\boldsymbol{j})$ where μ is a scalar.			
	i.	Show that lines l_1 and l_2 do <u>not</u> intersect.	[4]		
	ii.	Show that point $A(-1, -2, 8)$ lies on line l_1 .	[1]		
	You are given both point $B(7, -2, -1)$ and point $C(-14, 12, -1)$ lie on line l_2 .				
	iii.	Find the acute angle between lines <i>CA</i> and <i>CB</i> .	[3]		
	iv.	Find the area of triangle <i>ACB</i> .	[2]		
	The vector <i>CA</i> is denoted by vector \boldsymbol{u} .				
	V.	Find the unit vector <i>u</i> .	[1]		
b)	A c	urve has equation $3x^2 - xy + y^2 = 80$.			
	i.	Find $\frac{dy}{dx}$ in terms of x and y.	[4]		
	Points P and Q lie on the curve and the gradient of the tangents to the curve at both points P and Q is $-\frac{4}{3}$.				
	ii.	Show that at points P and Q, $y = kx$ where k is an integer.	[3]		
	iii.	Hence find the coordinates of points P and Q.	[2]		

a) A curve has equation

$$y = \frac{x^2 - 8}{x + 1}$$

Use the Quotient Rule to find $\frac{dy}{dx}$ and hence show that the curve has no real stationary values. [5]

b) i. Write $\frac{3x^2 + 9x + 7}{(x+1)(x+2)^2}$ in the form $\frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$

where A, B and C are constants to be determined.

ii. Hence evaluate

$$\int_{0}^{2} \frac{3x^{2} + 9x + 7}{(x+1)(x+2)^{2}} dx.$$

Give your answer in the form $\ln p + \frac{q}{r}$ where p, q and r are integers. [5]

c) i. Use integration by parts to find

$$\int 4x \ e^{2x} \ dx.$$
 [3]

ii. The curve $y = 2x^{\frac{1}{2}}e^x$ is rotated about the x – axis between x = 0 and $x = \ln 2$.

Find the volume formed.

[3]

[4]

This is the end of the examination.

Blank Page