NCUK

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYME002 Mathematics Engineering Examination 2017-18

Examination Session Semester Two **Time Allowed** 2 Hours 40 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 45 marks.

SECTION B Answer 4 questions ONLY. This section carries 80 marks.

The marks for each question are indicated in square brackets [].

- Answers must not be written during the first 10 minutes.
- A formula booklet and graph paper will be provided.
- An approved calculator may be used in the examination.
- Show **ALL** workings in your answer booklet.
- Examination materials must not be removed from the examination room.

DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE INVIGILATOR

Section A Answer ALL questions. This section carries 45 marks.

Question A1

Point A lies at (-8, 4), point B lies at (-2, 16) and point C lies at (14, k).

BC is perpendicular to AB.

Find the value of *k*.

[5]

Question A2

The probability that event *X* occurs is (2c - 1). The probability that event *X* does not occur is (8c - 4). Events *X* and *X'* are mutually exclusive.

Find the value of *c* and hence find p(X).

[3]

Question A3

When $2x^3 + (2p-1)x^2 - px - 1$ is divided by (x + 2), the remainder is 3p.

Use the Remainder Theorem to find the value of *p*. [3]

Question A4

In the expansion of

$$(\frac{1}{q} + qx)^7 \quad (q \neq 0)$$

the term in x^5 is 15 times larger than the term in x^4 .

Find the two values of q.

Question A5

Solve the equation

$$\frac{e^{2x} - 10}{e^x + 10} = 1.$$
 [4]

[4]

Question A6

Figure 1 shows triangle PQR with PQ = (a - 3) cm, PR = (2a + 3) cm and angle P = 30° .

The area of triangle PQR is (7a + 6) cm².

Find the value of *a*.

Question A7

Find

$$\int (x+\frac{1}{x})^2 dx.$$
 [4]

All working must be shown.

Question A8

Solve the equation

$$|3x - 4| = 14.$$
 [3]

Question A9

The function f(x) is defined as $f(x) = x^5 - 230$.

Starting with x = 3, apply the Newton-Raphson method once to obtain a better approximation to the equation f(x) = 0.

Give your answer to **4** significant figures.

In this question, 1 mark will be given for the correct use of significant figures. [4]

[4]

Question A10

The times taken for a large container to fill with water can be assumed to follow a Normal distribution with mean 40 minutes and standard deviation 2 minutes.

The container is filled every day over 70 days.

On approximately how many days will it take more than 42 minutes to fill the container? [4]

Question A11

By writing sec x as $\frac{1}{\cos x}$ and using the Quotient Rule, show that the differentiation

of $\sec x$ is $\sec x \tan x$.

Each stage of your working must be clearly shown.

Question A12

Write $\frac{2x+19}{(x-3)(x+2)^2}$ in the form $\frac{A}{x-3} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$ where A, B and C are

constants to be determined.

[4]

[3]

Section B Answer <u>4</u> questions ONLY. This section carries 80 marks.

Question B1

a)	i.	Write $x^2 + 6x + 4$ in the form $(x + a)^2 + b$ where <i>a</i> and <i>b</i> are integers.	[2]
	ii.	Hence solve the equation $x^2 + 6x + 4 = 0$ giving your answers in the form $p + \sqrt{q}$ and $p - \sqrt{q}$ where <i>p</i> and <i>q</i> are integers.	[2]
	iii.	Sketch the graph of $y = x^2 + 6x + 4$, showing clearly the coordinates of any stationary value, and where the curve crosses the x – axis and the y – axis.	[3]
b)	Solve the inequality $x^2 + 9x \ge 0$.		[3]
c)	The 11 th term of an arithmetic series is half of the first term.		
	i.	Show that if a is the first term and d is the common difference, then	

$$a = -20d.$$
 [2]

The sum of the first 51 terms is 1020.

ii. Find the value of *d* and the value of *a*. [4]

d) In this part, answers must be given in full, with no rounding off.

A geometric series has common ratio $\frac{3}{5}$ and the sum of the first 7 terms is 37969.

- i. Find the first term. [3]
- ii. Find the sum to infinity. [1]

a) Two variables, *x* and *y*, are connected by the formula

$$y = 480 e^{0.6x} - 120.$$

i. Find y when x = 0.1 [2]

ii. Find x when
$$y = 528$$
 [3]

iii. Find
$$\frac{dy}{dx}$$
 when $x = 1.4$ [3]

b) Solve the equation

$$\log_4(x^2 + 7x + 10) - \log_4(x^2 + x - 2) = 1 \quad (x > 1)$$
 [4]

All working must be shown.

Figure 2 shows acute-angled triangle ABC with AB = 54 cm, AC = 58 cm, BC = $\sqrt{1744}$ cm and angle A = θ° .

- i. Find $\cos \theta$, giving your answer in the form $\frac{m}{n}$ where *m* and *n* are integers. All working must be shown. [3]
- ii. <u>Without</u> working out the size of θ , and showing <u>all</u> working, show that $\sin \theta = \frac{20}{29}$. [2]
- iii. Find angle B. [2]
- iv. Find the shortest distance from point C to side AB. [1]

Figure 3

Figure 3 shows a box in the shape of a cuboid with length 5x cm, width 3x cm and height *h* cm.

The outside surface area is 2880 cm².

The box has a base but it has no top.

i. Express h in terms of x.

[2]

ii. Show that the volume of the box, *V*, is given by

$$V = 2700x - \frac{225x^3}{16}$$
 [3]

- iii. Use $\frac{dV}{dx}$ to find the value of x which gives the maximum volume. [4]
- iv. Confirm that your value of *x* gives a maximum. [3]

Part b) is on the next page.

Figure 4

Figure 4 shows the curve $y = 9 - \frac{1}{4}x^2$ and the line *l* which is a normal to the curve at the point (4, 5).

- i. Find the equation of line *l*. Give your answer in the form y = mx + c. [3]
- ii. Find the area, which is shaded on the diagram, that is bounded by the curve $y = 9 \frac{1}{4}x^2$, line *l* and both the *x* and *y* axes. [5]

b)

- a) Function f(x) is defined as f(x) = 1/(e^x + 3) (x > 0)
 Function g(x) is defined as g(x) = 16x + 1/3 (-∞ < x < ∞)
 i. Is g(x) a one-one function? Give a reason. [2]
 ii. State the range of f(x). [1]
 - iii. Find $g^{-1}(11)$. [2]
 - iv. Solve g(f(x)) = 2. Give your answer as an exact logarithm. [3]

Figure 5 shows the function y = h(x) which crosses the x – axis at (-8, 0) and (6, 0); and has a stationary value at (0, -4).

Draw a sketch of the graph y = h(2x). On your sketch, show clearly the coordinates where the curve crosses the x – axis, and also the coordinates of any stationary value.

c) i. Use one of the addition formulae to prove that $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$. [2]

- ii. Show that $\cos 2\theta$ can also be written as $1 2\sin^2\theta$. [2]
- iii. Solve the equation $\sin \theta 3\cos 2\theta + 1 = 0$ ($0^\circ \le \theta \le 360^\circ$) [5]

[3]

a)	A line <i>l</i> passes through point $A(-3, 2, 4)$ and point $B(9, -4, 22)$.			
	i.	Write down a vector equation of line <i>l</i> .	[2]	
	Point <i>C</i> lies at (-3, 11, 21).			
	ii.	Find the acute angle between <i>AC</i> and <i>AB</i> .	[4]	
	iii.	Show that triangle <i>CAB</i> is isosceles but not equilateral.	[3]	
	iv	Show that point $D(3, -1, 13)$ lies on AB.	[1]	
	v.	$\rightarrow \rightarrow$ Find <i>AB</i> . <i>CD</i> and explain what this shows. Working must be shown.	[3]	
b)	A curve has equation $4x^2 - 2xy + y^2 = 48$.			
	i.	Find $\frac{dy}{dx}$ in terms of x and y.	[4]	
	ii.	Show that, where there is a stationary value, $y = 4x$.	[1]	

iii. Find the coordinates of the stationary values. [2]

a) i. Use the substitution $u = 1 + x^3$ to find

$$\int \frac{x^2}{1+x^3} dx.$$
 [4]

ii. Solve the differential equation

$$\frac{dy}{dx} = \frac{yx^2}{1+x^3}$$

subject to y = 3 when x = 0.

Write your answer in the form y = f(x) which must contain no logarithms. [4]

b) The curve $y = \sqrt{(4 - x^2)}$ is rotated about the x - axis between<math>x = 0 and x = 3.

Find the volume formed. All working must be shown. [4]

c) Use integration by parts to evaluate

$$\int_{0}^{\pi} 4x \sin x \, dx.$$
 [5]

d) A curve has equation

$$y = (x^2 - 8x + 3)^4$$
.

Find $\frac{dy}{dx}$ and state its value when x = 4. [3]

All working must be shown.

This is the end of the examination.

Blank Page