NCUK

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYMB002 Mathematics Business (Business)

2016-17

Examination Session Semester Two **Time Allowed** 2 Hours 40 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

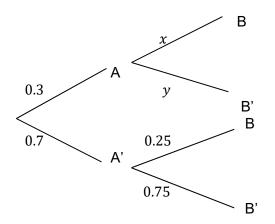
SECTION A Answer ALL questions. This section carries 45 marks.

SECTION B Answer 4 questions ONLY. This section carries 80 marks.

The marks for each question are indicated in square brackets [].

- Answers must not be written during the first 10 minutes.
- A formula booklet and graph paper will be provided.
- An approved calculator may be used in the examination.
- Show **ALL** workings in your answer booklet.
- Examination materials must not be removed from the examination room.

DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE INVIGILATOR


Section A Answer ALL questions. This section carries 45 marks.

Question A1

Find the equation of the line which is perpendicular to the line 3y - x - 8 = 0 and passes through the point (-3, 7).

Give your answer in the form ax + by + c = 0 where *a*, *b* and *c* are integers. [4]

Question A2

The tree diagram above shows the probabilities of events A and B. The probability that event A and event B both occur is 0.132

Find the value of x and the value of y.

Question A3

Find the range of values which satisfy the inequality $2x^2 + 7x - 15 \le 0$. [4]

Question A4

In the expansion of $(\frac{1}{2} + kx)^8$, where $k \neq 0$, the coefficient of the x^3 term is 3 times larger than the coefficient of the x^2 term.

Find the value of k.Show all of your working.[4]

[3]

Question A5

Solve the equation $\log_9 x - \log_9 (x - 5) = \frac{1}{2}$ (x > 5). Show all of your working. [4]

Question A6

Solve the equation $5 \tan \theta = -4$ for $\pi \le \theta \le 2\pi$.

Give your answer to **3** significant figures.

In this question, 1 mark will be given for the correct use of significant figures. [3]

Question A7

The function f(x) is defined as $f(x) = 4x^5 - \frac{2}{x} + e^{3x} - \tan x$.

Find f'(x).

Question A8

A set of 15 readings has standard deviation 3.2 and the sum of the squares of the readings is 2137.35

Find the mean.

Question A9

A small shop sells ice-creams. The numbers of ice-creams sold during each quarter of 2016 and during the first quarter of 2017 are shown in the following table.

Year	Quarter	Number of ice-creams sold	4-point moving average
2016	1	170	
	2	588	
			p
	3	1043	
			536
	4	319	
2017	1	q	

Find the value of p and the value of q.

Give a reason why it may not be appropriate to use the readings above to predict [3] ice-cream sales during the rest of 2017.

[3]

[3]

[5]

Question A10

A discrete random variable, *X*, has probability distribution as given in the table below.

x	1	2	3.5	6	8
p(X = x)	0.16	0.3	0.24	0.12	0.18

Find E(X) and Var(X).

Question A11

A curve has equation $-4x^2 + 2xy^3 + 16y = -80$.

Find the value of $\frac{dy}{dx}$ at the point (2, -2). All working must be shown. [5]

Question A12

Use the substitution $u = x^3 + 1$ to find the **exact** value of

$$\int_{0}^{1} x^{2} e^{2(x^{3}+1)} dx \qquad [4]$$

All working must be shown.

Section B Answer <u>4</u> questions ONLY. This section carries 80 marks.

Question B1

a)	i.	Solve the equation $x^2 - 2x - 4 = 0$ by completing the square.	
		You must show each stage of your working.	
		Give your answers in the form $a + \sqrt{b}$ and $a - \sqrt{b}$ where a and b are integers.	[4]
	ii.	Sketch the graph of $y = x^2 - 2x - 4$. Show clearly the coordinates where your curve has a stationary value and where it crosses the $x -$ and $y -$ axes.	[3]
b)	The	function $f(x)$ is defined as $f(x) = 2x^3 - 7x^2 - 10x + 24$.	
		de $f(x)$ by $(x + 2)$ and hence factorise $f(x)$ completely. Working must shown.	[4]
c)	An	arithmetic progression is defined as 539, 531, 523,	
	Wh	ich term in the progression is the first to fall below $-100?$	[2]
d)	The	4^{th} term of a geometric series is 67.5 and the 7 th term is 1822.5	

- i. Find the common ratio and the first term. [5]
- ii. Find the sum of the first 12 terms. [2]

a) Shares in a company become available and the price of a single share, $\pounds P$, is given by the formula

$$P = 16e^{kt}$$

where t is the number of weeks from when the shares first become available and k is a constant.

i. State the value of a share when t = 0. [1]

After 4 weeks the price of a share has risen to $\pounds 20$.

- ii. Show that the value of k is approximately 0.0558 [3]*Each stage of your working must be clearly shown.*
- iii. Find the price of a share after 8 weeks. [2]
- iv. Find the value of $\frac{dP}{dt}$ when t = 5. [3]
- v. Explain what your answer to part iv tells us. [1]
- b) Write the expression $\frac{2}{3}\log_2 125 + 4\log_2(\sqrt{12}) 2\log_2(15)$ in its simplest form which must contain no logarithms. [4]

Each stage of your working must be clearly shown.

Part c) is on the next page.

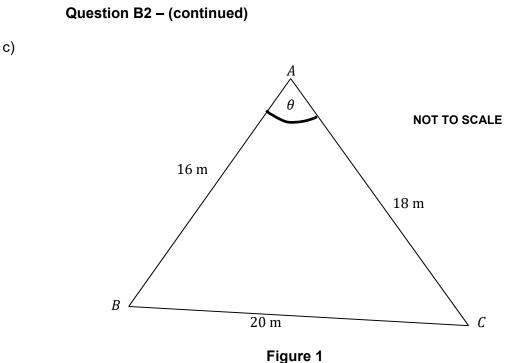


Figure 1 shows the acute-angled triangle ABC with

AB = 16 m, AC = 18 m, BC = 20 m and angle $A = \theta$.

- Find the value of $\cos \theta$, giving your answer in the form $\frac{a}{b}$ where a and i. [3] *b* are integers.
- Without finding the size of θ , and showing all working, show that the ii. exact value of $\sin \theta$ is $\frac{\sqrt{231}}{16}$. [2]
- iii. Find the area of triangle *ABC* giving your answer in the form $m\sqrt{n}$ where [1] m and n are integers.

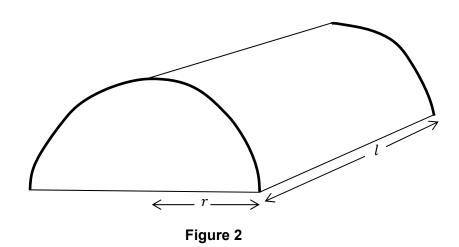


Figure 2 shows a large shed which has length l metres and cross-section in the shape of a semi-circle with radius r metres.

The shed has no base.

The outside surface area of the shed is 48π m².

- i. Find l in terms of r. [2]
- ii. Show that the volume, *V*, of the shed is given by

$$V = 24\pi r - \frac{1}{2}\pi r^3.$$
 [3]

- iii. Use $\frac{dV}{dr}$ to find the value of *r* which gives the maximum volume. [4]
- iv. Confirm that your volume is a maximum. [3]

Part b) is on the next page.

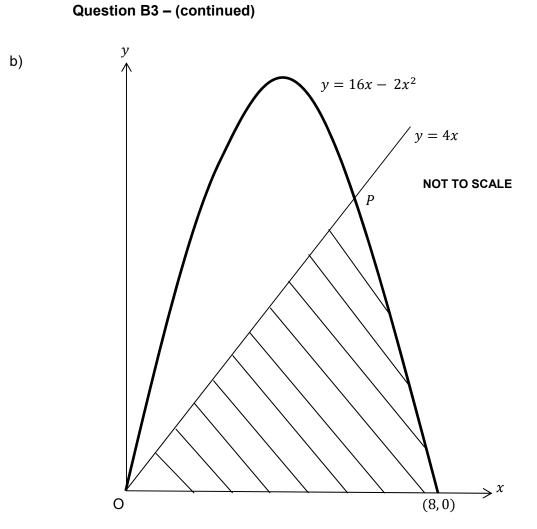


Figure 3 shows the curve $y = 16x - 2x^2$ and the line y = 4x. The curve and the line intersect at the origin and at point *P*.

- i. Confirm that the coordinates of point *P* are (6, 24). [1]
- ii. Find the area, which is shaded on the diagram, that is bounded by the curve $y = 16x 2x^2$, the line y = 4x and the x axis. [7]

Show all working.

a) An assistant at a large department store kept a record of the number of minutes spent serving each customer over a period of time. The results are shown in the table below.

Time, <i>t</i> , in minutes	Frequency
$4 \leq t \leq 5$	6
$5 < t \leq 6$	12
$6 < t \leq 7$	23
$7 < t \leq 8$	22
$8 < t \leq 9$	12
$9 < t \leq 10$	8
$10 < t \le 11$	5

(You may wish to copy and extend this table on your answer booklet to help you answer some of the following questions.)

	i.	Estimate the mean.	[3]
	ii.	On graph paper , draw a cumulative frequency curve.	[4]
	iii.	Use your cumulative frequency curve to estimate the median and interquartile range.	[3]
	iv.	Use your cumulative frequency curve to estimate how many customers took longer than $8\frac{1}{2}$ minutes to serve.	[1]
)		Two events, A and B, are such that $p(B A) = 0.4$, $p(A \cap B) = 0.32$ and $p(A \cup B) = 0.84$.	
	i.	Show that $p(A) = 0.8$ and find $p(B)$.	[4]
	ii.	Draw a Venn diagram to show these probabilities and hence work out $p(A' \cup B)$.	[4]
	iii.	Show that events A and B are not independent.	[1]

b)

a) It is claimed that a certain substance, *S*, when added to cattle food will result in an increase in milk production. A farmer decides to try out this substance. She adds a fixed amount of substance *S* to the cattle food each month and also records the milk production. The trial lasts 8 months. The results are shown in the table below.

Amount of substance <i>S</i> added (kg)	Milk production (in hundreds of litres to the nearest whole number)
(x)	(y)
1	50
6	70
3.5	52
4.5	64
5	48
2	57
3	61
7	46

The data can be summarised as follows:

$$\sum x = 32; \sum y = 448; \sum x^2 = 156.5; \sum y^2 = 25590; \sum xy = 1799.$$

i. Find s_x , s_y and s_{xy} .

Hence find the product moment correlation coefficient.

ii.	Describe the correlation between the amount of substance S added and		
	the milk production. Can the claim be supported?	[2]	

- b) The masses of hens' eggs can be assumed to follow a Normal distribution with mean 52 grams and standard deviation 10 grams.
 - i. 20% of the eggs have a mass of x grams or less. Find the value of x. [3]
 - ii. If an egg has a mass of 67.3 grams or more, it is classified as 'very large'. What percentage of all eggs are 'very large'? [3]
 - iii. A tray holds 30 eggs. Find the probability that there are exactly 3 'very large' eggs. [3]
- c) A car depreciates by 15% of its value each year. At the beginning of 2017 the car is worth £7225.
 - i. Find its value at the beginning of 2016. [2]
 - ii. In which year will the value of the car be expected to fall below £2500? [3]

Question B6

[4]

a) i. Differentiate
$$y = \tan^8 x$$
. [2]

ii. A curve has equation $y = \frac{x}{x-3}$.

There are two points on the curve where the gradient is $-\frac{4}{3}$. Find the coordinates of these two points. *Working must be shown.* [5]

- b) i. Express $\frac{12}{x^2 9}$ in the form $\frac{A}{x 3} + \frac{B}{x + 3}$ where A and B are constants to be determined. [3]
 - ii. Hence evaluate

$$\int_{4}^{11} \frac{12}{x^2 - 9} \, dx$$

giving your answer in the form $\ln k$ where k is an integer. [5]

c) Use integration by parts to evaluate

$$\int_{0}^{\frac{1}{4}} 16x \ e^{4x} \ dx$$
[5]

All working must be shown: just quoting the answer, even if it is correct, will score no marks.

This is the end of the examination.