Fractional Brownian Motion for Stock Price and Call Price Modelling

Abstract

In order to forecast future stock prices and option prices, models have traditionally been constructed with the random element
determined by Brownian motion. It’s known that Brownian motion is part of the generalised form named fractional Brownian
motion (fBm) which has a varying Hurst parameter between 0 and 1. Brownian motion has a H value equal to 0.5. In this
dissertation we explore the background theory to provide an improved stock price and call option price model. We have shown
that alternative H values can produce better predictions for the stock price and for the call option price. Also when H = 0.5 in
the Fractional Brownian motion model the stock price proved to be better than the original geometric Brownian motion (gBm)
model even though theoretically they should have been the same. For a particular call option we achieve a method for finding
the optimum H value to minimise the error.

1 Introduction

At the present time there is a growing amount of research on the theory of applying fractional Brownian motion (fBm) to the
stock market. However there seems to be a lack of data explicitly supporting the theory showing that fractional Brownian
motion has better results than the traditional model Brownian motion to predict future stock prices and call option prices. The
observed stock data have been taken from Yahoo finance and the options data downloaded from the internet site optionsdata.net.
If the results show that fBm stock price model is better for speculating on the stock market than Brownian motion stock price
models, then a trader would prefer to use this as a tool in order to go long or short on a particular stock. Also derivative
companies who offer options would be advised to use the fBm Black Scholes equation to determine the price of an option to
safeguard the company from a loss and allow them to make a profit in the options’ business.

2 The Role of Brownian Motion for Stock Price Modelling

2.1 Properties of Brownian Motion

Brownian motion is a random process that depends continuously on ¢ € [0, 7] and satisfies the following conditions [24]:
e B(0)=0.

e For 0 < s <t < T the random variable given by the increment B(¢) — B(s) is normally distributed with mean zero and
variance t-s. Equivalently B(t) — B(s) ~ v/t — sN(0,1).

e For 0 < s<t<u<v<T the increments B(t) — B(s)and B(v) — B(u) are independent.

T

e For computational purpose we discretize Brownian motion where 6t = .

dB(t) . . . .
dg ) is used as input noise in dynamical systems.

e The derivative of Brownian motion
e Self similarity which means invariance in distribution under a suitable change of scale.
e Continuity

e Normality - the increments Bs; — B, have a normal distribution N (0, t)

e Markov property - the conditional distribution B; given information up to time s where s < ¢ depends only on B(s)

2.2 Problems of Brownian Motion as a Model of Stock Price

e When on its own there is a probability = % that Brownian motion is negative. However the stock price is never negative
and has some growth element. Therefore the model requires a positive deterministic function of time as well.



2.3 Geometric Brownian Motion Model of the Stock Price

Brownian motion on its own would lead to the stock price having negative values. Stock prices are always greater than zero
so it’s written as an exponential which can only be positive. We will define the differential which contains two parts: the
deterministic part to permit trend in the stock price and the stochastic elements to allow fluctuations of the price.

4t = pdt + odB,

Determining the parameters ; and o

dSt = St,LLdt + StO'dBt
Using Ito’s representation the solution is
InSet = [ — %)dt + 0dB,

We will define fi as the mean of the natural logarithm of the stock price rate change.

ji = Elln5]

Elin®6] = E[(u — % )dt] + ElodB,]
Blin*5*] = E(n — 5)d1]

0= Elp— %]dt
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[In252)? = [ — 212dt% + 2[p — G |dtod By + [0dBy)?

El(n3$2)%) = Bllu — 51de%] + 0%t

We will define v? as the volatility of the natural logarithm of the stock price rate change.
v? = E[(In252)?] — E[ln°g2)?

v? = o2t

Standard deviation =0 =

SE

3 Fractional Brownian Motion
Brownian motion belongs to a family called fractional Brownian motion (fBm) with varying Hurst values in the interval [0, 1].

The traditional stock price models have been based on Brownian motion B(t) with H = % It’s important to discuss whether
this is the optimum fBm to model the stock price. We will firstly list the main properties of f{Bm.

e Gaussian process t € R

Epuy[Bu(t)] =0

For simplicity assume By (0) =0

By, [Bu(t)Br(s)] = 5[t*7 + 27 — (t — 5)*]

o Var,,(Bu(t)) = E,, (B (t)?] = t2H

For H € (0,1) fractional Brownian motion is self similar in the sense that By (at) has the same laws as By (t)

3.1 Correlation of Fractional Brownian Motion

Fractional Brownian motion can be divided into three groups depending on the nature of its correlation:

3.1.1 No Correlation fBm Process

for H = %
The observations are uncorrelated.
This is practical if the trader is a follower of the Efficient Market Hypothesis believing that increments are independent.



3.1.2 Long Memory fBm Process

for % <H<I1

p(k) > 0 for k large enough.

S |p(k)| = o

The process X; has long memory and long range dependence.

This long range dependence is a property that makes it useful for stock price modelling. Some traders would argue that stocks
moves in trends which conflict with the Efficient Market Hypothesis idea that prices are unpredictable.

3.1.3 Negative Correlated fBm Process

for 0 < H < %

p(k) < 0 for k large enough

S Jp(k)| < o0

The process is also said to have short-range dependence.

Short-range dependence is a measure of the decline in statistical dependence of two events separated by successively longer
spans of time.

3.2 Drawback of fBm as a Stock Price Model - not a Semi-Martingale

If an investor has a portfolio of shares and bonds and is guaranteed not to make a loss, therefore we have an arbitrage situation.
It’s natural for the stock market to aim to eliminate giving away guaranteed profits so the model shouldn’t allow it either. To
be free from arbitrage a stock price model’s stochastic part must have the martingale property. Fractional Brownian motion is
only a martingale at H = % For H # % fractional Brownian motion isn’t a semi martingale for the following reasons:

e H< % the quadratic variation for B doesn’t exist so therefore can’t be a semi-martingale.

o for H > % the process will be in the following form BfY = B{' + M + A. Suppose B is a semi martingale therefore
[M, M]; = [BH, BH]; = 0. This implies B! = By = 0 a.s for all t. Hence Bff = A so has finite variation which leads to a
contradiction.

The fact that fBm lacks the martingale property is a major drawback which creates the impression of arbitrage opportunities in
speculating in the stock market. This is against the stock market principle that there is 'no such thing as a free lunch.” When
trading on the stock market there is always a possibility of losing, therefore the model shouldn’t say otherwise.

3.3 Integration with respect to Fractional Brownian Motion

We will aim to use stochastic calculus to integrate a function with respect to fBm.
Regarding integration with respect to fBm there are two types: pathwise integration and Wick Ito integration. In the following
section we will discuss both types and explore the relationship between them.

3.3.1 Pathwise Integration

Let m:a=tyg <ty <ty, - < tn = b be a partition of [0, T

fo Ft,w)dBHE = limaj0 S0y f(te,w) B (tip1) — BY (1))
|Al = mazocp<n—1(the1 — tr)
These integrals don’t have expectation zero.

3.3.2 Wick Ito Skorokhod Integration

In order for fBm to be arbitrage free we need the martingale property
E[X(t)|Fs] = X(s)
X(t) = X(s) + [, f(u)dBH
Applying expectations to both sides
E[X(0)] = E[X(s)] + EL[] f(u,w)dB]]]
Unfortunately in the case when f(u) is a stochastic function E[f: flu,w)dBH] #£0
For X (t) to be a martingale we need a different operator to ensure the integral becomes zero.
The Wick integral product is deﬁned as:
fo fltw <>dBHfhmwﬂozZ 0 f(tk, Yo [BH (tir1) — B (t;)]
In contrast to pathwise integration
fo f(t,w)odBH] =0



We define F(w) and G(w) [30] .
Fw) =2 aer taHa(w)
G(w) =2 pes taHp(w)

e | is the set of all multi indices

o Ho(w) = hay ((w,€1))ha,((w; €2)) - - ha,, (W, €m))

Consequently the Wick product of F(w) and G(w) is the following:
(FoG)(w) = 24 per absHarp(w)

In this case we will let f,g € Li(R). This implies that f,g are deterministic functions it can be shown that [24]

( /R fdBy) o ( /R gdBy) = ( /R JdBy)( /R 9dByr) — (f.9)o (1)

Applying expectations to both sides we note two main properties

Ei(fRdeH)Q(ngdBH)i =0

e For deterministic functions

Ei(fRdeH)(ngdBH fRdeBH)(fRQOdBH):(fag)rb

3.3.3 Relation between the Wick Integral and Pathwise Integral with respect to Fractional Brownian Motion

The relation between the Wick integral and pathwise integral is the following [20]
foT F(Bpu(t))dBp(t fo )) o dBg(t )+HfOT F'(By (t)t2H-14t

We WlSh to ﬁnd a condition for the pathwise integral and Wick Ito integral to be the same.
fo )odBf] =0
fo BH dBH] Hfo F/(BEt*H-14t]

%hen F = 0 ie when 7tﬂhe function is deterministic.

J Py 0Bl = [T F(BI)dB!

If function F is deterministic ie a non random function we can ensure a linear process X (7T") which is in the form
X(T) = )+ fo F(BH)dBH
can become a rnartingale

3.3.4 Properties of Wick Ito Integration

Let us denote the space Li

¢: RtR— R

#(s,t) = H(2H — 1)|t — s|?H -1

For Borel measure functions fg[0,T]— R

||f||¢ =/, fo (s t)dsdt

9)¢ = fo fo o (s, t)dsdt
For a deterministic function fe Li([O, T))
fn be the step function approximating f

fTb = Zz akX[tk tk+1)( ) — f( )
S fa)odBE = an[Bf | — Bl

For the continuous case When n — 00
fo t) o dBH = lim,, o fo fn(t)odBH

We will now list the main properties of Wick Ito integration.



fo (t)odBH] =0
fo odBHfO (t)odBH] = (f,9)¢

E[(fy f(t)odBI)) = |£113

3.4 Geometric Fractional Brownian Motion

Similar to geometric Brownian motion the stock price differential has a deterministic component and a stochastic part. However
we use instead fractional Brownian motion to drive the random component.

dSt = MStdt + O'StdBH(t)

pER o>1and H € (3,1)

The solution to the differential equation is the following:
S = Soexp(ut + o By (t))

A stock price model should have a separate trend part and noise part. The latter part should just be noise. It shouldn’t
dictate the direction of the stock price. The general trend is calculated by p, the average of the change of stock price. A
stochastic process that has an unpredictable nature is called a martingale.

However fractional Brownian motion doesn’t have the martingale property, but has long term memory for H > %

F(Bu(t)) = f(Bu(0) + [y f/(Br(0))dt
E[f(Bu(1)] # f(Bu(0))

To remove arbitrage we need to use the Wick product which allows the expectation of the stochastic component to be zero.
Therefore the stochastic differential equations becomes
dSt = MStdt + O'St <o dBH(t)

Wick Exponential

Before we solve a stochastic process involving a Wick product, we need to know how to interpret an exponential containing the
Wick product.
Firstly let us define X°".
X"=XoXo---0X (n factors)
expo (X) =300 X"
By (t) =< w, x[0,4() >= (x[0,4(-); er)p < w,er >
It can be proven that [24]
a2tH

expo (0By(t)) = exp(c By (t) — 75—)

Using Wick Integrals to solve the Fractional Stochastic Equations

Let the differential of a stochastic process Sy contain the Wick product.
dS; = uSidt + oSy o dBp (t)

S(0) = Sy

dst = uSy + Sy o Wy (t)

& [yt oW (1) o 5,

dS; = [ut+o fo Wiy (s)ds| o Sy

Integrating both sides.
Sy = Soexp®(ut + Ufo Wi (s)ds)
St = Soexp®(ut + oBu(t))

The Wick product is for stochastic proccesses so we can factor out the deterministic part
Sy = Soexp(pt)exp o (0 Bu(t))

St = Spexp(
E,.,[S¢] = Soexp(ut)

®))

4 Fractional Black Schole’s Equation

The original Black Schole’s equation is a means to calculate the fair option price. It eliminates arbitrage opportunities for both
the buyer and the seller of the call option. The equation is based on the assumption that the stock price follows a geometric



Brownian motion with constant drift and volality. Perhaps this assumption is wrong and so we aim to enlarge the scope and
assume the stock price follows a geometric fractional Brownian motion. Let F(S,T) be the call option price where T is the
duration of the period, St is the stock price at the end of the period, K is the strike price, p the bank interest rate and o is
volatility of the stock.

F(S,T) = So¢(dr) + Kexp(—pT)¢p(dy — oT™)

d — InSL 4 [p+22]T

O'TH
o(t) = \/g f exrp _*)ds
Evidently when H = 5 we have the traditional Black Schole’s equation. For this equation there is now an additional unknown

value H as well as 0. In the experiments below we will choose the values that will minimise the error between the predictions
and observed values.

4.1 Arbitrage opportunities with Fractional Brownian Motion

We are going to show that pathwise integration with respect to fBm will create arbitrage opportunities for the trader. [22]

Example

Let us define a portfolio V?(¢) composed of a quantity of stocks Sy(¢) and bonds S;(¢) and for simplicity let o = 1.
VO(t) = do(t)So(t) + ¢1()S1 (1)
¢o( ) =1—exp(2Bu(t))

) =

ou(t (exP(BH( ))—1)
dSo(t) = rSo(t)dt
d51 (t) S1(t)pdt + S1(t)odBy (t)

S1(t) = exp(ut + o Bu(t))
VO(t) =[1 — exp(By(t ))]exp( t) + 2exp(B (t) — 1)exp(By(t) + rt)
VO(t) = [exp((Bu(t)) — 1]exp(rt) > 0 for a.a < t,w >
P(VO(t)>0)=1

Therefore the portfolio is predicted using the fBm model to have guaranteed gains on the stock markets. In the real world it’s
rare to have guaranteed gains when speculating on the stock model except for illegal situations such as price fixing or inside
trading.

4.2 Girsanov Theorem applied to Fractional Brownian Motion

B[ is fractional Brownian motion under the measure P.

We will define B} on the ¢ algebra F under the new measure Q
Bff = Bl + [} ~.ds

Let K be the solution of the integral equation

Jr K(s)é(t,s)ds = »(t) then

B[ is a fractional Brownian motion under the probability measure Q on (Q, F¥'), which is equivalent with P.
The Radon-Nikodym derivative which relates both measures is the following [29]:
dQ

ap = exp(—/RK(t) odBH (t) — %|K|3,) =expo(— <w,K >) (2)

It can be shown that [29]
E[3]=1

This implies that we can use B;H on the measure Q.

4.3 Arbitrage Free Portfolio Trading Strategy 0(t) = 0(t,w) = (u(t), v(t))

Here we are going to apply a trading strategy using Wick integrals to show that this portfolio is free from arbitrage

This is a .#/ adapted 2 dimensional process giving the number of units u(t),v(t) held at time t of the bond and the stock.
The corresponding value process

Z9(t,w) = u(t)A(t) + v(t) o X ()

Self-Financing Portfolio

dZ%(t,w) = u(t)dA(t) + v(t) o dX ()
For the stock price X(t)
dX (t) = uX(t)dt + o X (t) o dBy(t)



dZ%(t,w) = u(t)dA(t) + v(t)p o X (t)dt + ov(t) o X (t) o dBy(t) where t € [0,T]

For the bank account or bond A(t)
dA(t) = pA(t)dt

It can be shown that [31]

exp(—pt) 20 (t,w) = Z°(0,w) + fo exp(—ps)ov(s) o X (s)] o dBg (s)
Let us define f(t,w) = 6xp( ps)ov(s) o X(s)

Admissible Portfolio

Portfolio is admissible if :
e It is self-financing so value changes are only due to market price fluctuations.
e The stochastic process f(t,w) belongs to the space E;’Q(R) of all ZH adapted processes.

A stochastic process f(t,w) = f(t) belongs to the space E;’Q (R) if:

Eji,[[g f(t,w)) ©dBp(1)] = 0
En, (g ft,w) OdBH())]*HfHle
£ 32y = Enol(Jip fABE)) = B, [( fRfodBﬁ V2] + B, [([ [ Df6(s, t)dsdt)?]

It’s worth noting that if f(t w) is deterministic.
||f||L12 fRfR o(s,t)dsdt

Arbitrage Portfolio

An admissible portfolio 6 is called an arbitrage for this market (A(t), X (¢)) for ¢ € [0,T] if

79(0) <0, Z%(T) <0 a.s and

pol(w; Z°(T,w) > 0] >0

We deduce that no arbitrage exists by taking expectations with respect to the risk neutral probability measure fig
By, lexp(—pt) Z°(t,w)] = Z°(0,w)

5 Stock Price Modelling

5.1 Choice of Simulator for Fractional Brownian Motion

Davies and Harte method will be chosen since it performs well in the test and is easy to compute. A reason for this is that
the simulator doesn’t require storing past data unlike the Hosking and Cholesky methods and can perform the algorithms more
speedily. Other dissertations such as Tom Dieker [10] who have explored a wide range of simulators and approximate simulators
also comment on the pace and accuracy of this simulator.

5.2 Comparing Errors between Fractional Models and Geometric Brownian Motion Stock
Price Model

Now we aim to see if fractional models are better than the geometric Brownian motion. Geometric Brownian motion has
traditionally been used to model the stock price. If we find that fBm is better, not only should we consider the mean and
variance of natural logarithm of the price change (section 4.7) but also the Hurst value of the stock. In this experiment errors
at each day of a stock price model for the first 60 days are recorded and the norm (first,second and infinite) is computed. For
a stock price model a sample of a hundred norm errors is recorded and the mean is compared with other stock price models. 1
accepted normality on the Kolmogorov Smirnov test with significance level 0.05 and for the t pair test accepted the alternative
hypothesis that models were different with significance level 0.05. Please see results in the appendix (15.1).

1. For 2007 only the infinite norms satisfied the normality condition. H=0.8 was the best model followed by H=0.7. However
the t pair test showed no distinction between the fractional models. Fractional H=0.5 proved to be a better model than
gBm.



2. For 2008 only the infinite norms satisfied the normality condition. H=0.7 was the best model followed by H=0.5. However
the t pair test showed no distinction between these two models. Fractional H=0.5 proved to be a better model than gBm.

3. For 2009 only the infinite norms satisfied the normality condition. H=0.8 was the best model followed by H=0.5. However
the t pair test showed no distinction between these two models. Fractional H=0.5 proved to be a better model than gBm.

4. For 2010 only the infinite norms satisfied the normality condition. H=0.8 was the best model followed by H=0.7. However
the t pair test showed no distinction between these two models. There was not enough evidence to show that fractional
H=0.5 is a better model than gBm.

5. For 2011 only the infinite norms satisfied the normality condition. H=0.7 was the best model followed by H=0.5. However
the t pair test showed no distinction between the fractional models. Fractional H=0.5 proved to be a better model than
gBm.

6. For 2012 only the infinite norms for all models satisfy the normality condition. H=0.5 was the best model followed by
H=0.7. However the t pair test showed no distinction between the fractional models. Fractional H=0.5 proved to be a
better model than gBm.

Overall we see that fractional Brownian models perform better than geometric Brownian motion. Between the years 2007 and
2011 the assumption that H = 0.5 is incorrect as it leads to greater errors in the model. Throughout this period the stock
shown to have an H value of 0.7 or 0.8. This isn’t precise enough for a trader so he would be advised to experiment with the
different H values in that range to find the minimum error. Interestingly for 2012, when H = 0.5 is the optimum Hurst value
theoretically it shouldn’t matter if the fBm model or gBm are used as they are both the same. However the fractional Brownian
motion model performed better. This discrepancy will be discussed in section 12.

5.3 Predicting Future Values from Models based on Past Data

In order to reflect the real world of trading I compared future estimates from past data models in the short term (ie 11 days ) for
predicting the 12th day and long term ie (61 days) for predicting the 62nd day. With each model I carried out 100 simulations
and calculated a sample of errors. In the short term the geometric Brownian motion formula was better than any fractional
model created. However in the long term the results are considerably different. For both short and long term I compared
fractional at 0.5, 0.7, 0.8 with gBm. I accepted normality on the Kolmogorov Smirnov test with significance level 0.05 and for
the t pair test accepted the alternative hypothesis that models were different with significance level 0.05. Please see results in
the appendix (15.2).

Short Term Prediction Results

1. For 2007 gBm was best with error of 0.0170 compared to second best H=0.8 with error 0.0209. The results showed that
there wasn’t significant evidence at 0.05 significance level to show that there was difference between the fractional models

2. For 2008 gBm was the best with error of 0.0938 followed by H=0.8 with error 0.1332. The results showed that there wasn’t
significant evidence at 0.05 significance level to show that there was difference between all the models

3. For 2009 gBm was the best with error of 0.1022 followed by H=0.8 with error 0.1526. The results showed that there wasn’t
significant evidence at 0.05 significance level to show that there was difference between the fractional models

4. For 2010 gBm was the best with error of 0.0539 followed by H=0.5 with error 0.0659. The results showed that there wasn’t
significant evidence at 0.05 significance level to show that there was difference between all the models

5. For 2011 gBm was the best with error of 0.0468 followed by H=0.7 with error 0.0706. The results showed that there wasn’t
significant evidence at 0.05 significance level to show that there was difference between H=0.7 and third place H=0.8.

6. For 2012 gBm was the best with error of 0.0678 followed by H=0.7 with error 0.0876. The results showed that there wasn’t
significant evidence at 0.05 significance level to show that there was difference between the fractional models.

Long Term Prediction Results

1. For 2007 H=0.5 was the best with error 0.0082 and the other fractional models followed closely behind compared to gBm
0.0717. There was no evidence to show distinction between the fractional models.

2. For 2008 H=0.8 was the best with error 0.0559 compared to last place gBm 0.2149. According to the t test there wasn’t
significant evidence at 0.05 significance level to show that there was difference between the fractional models.

3. For 2009 H=0.5 was the best model followed by H=0.7. However the t pair test showed no distinction between these two
models. Fractional H proved to be a better model than gBm.



4. For 2010 H=0.7 had the least error 0.0269 with gBm in last position with error .2154. The results showed that there
wasn’t significant evidence at 0.05 significance level to show that there was difference between H=0.5 and second place
H=0.7. However there is difference between H=0.5 and H=0.8.

5. For 2011 H=0.5 was a best model with error 0.0225 and gBm in last position with error .1013. The results showed that
there wasn’t significant evidence at 0.05 significance level to show that there was difference between the fractional models

6. For 2012 the fractional models were clearly better than gBm. H=0.7 was the best with error 0.0282 with others closely
following. Geometric Brownian motion in last position had an error of .1094. However according to the t test there wasn’t
sufficient evidence to say that there is any distinction between the fractional models.

Models based on long period of data such as 61 days performed better than the short term 11 days. In the long term the model
has received more information about economic conditions, so has increased confidence in the stock and therefore can produce
a better estimation of future values. A trader would be advised to use past data over a wide period but that would require a
significant amount of computation. For that reasons a fast simulator of fBm would be preferred.

6 Analysis of Discrepancy between GBM and Fractional Brownian Motion at
H=0.5

In this section we are looking for a reason why there is a difference between the errors of gBm model and the fractional Brownian
model at H = 0.5. Theoretically there should be no difference since they are the same model but the fractional version tends
to have better stock price predictions. The error could be caused by the simulator or due to how MATLAB computes random
numbers.

Let us firstly use Beran’s test statistic

T (H) = 555 = 0.2680

P(TN > 0.2565) ~ (1 — 0.0570) = 0.9430

This implies that simulation generated by MATLAB program does fit a Brownian motion path.

However the Brownian motion simulator’s p statistic is not as well inside the acceptance region compared to the Davies and
Harte simulator with a p statistic of 0.9948.Therefore we can conclude that it’s better to use the fractional simulators to model
Brownian motion at H = 0.5 than the original stock price model. A possible explanation for this is that the simulator creates
a fractional Brownian motion that shares its characteristics with the covariance matrix. The gBm doesn’t enforce this property
but just relies on the quality of MATLAB’s random simulator.

7 Option Price Modelling

The method T used (supported by mathematicians Corrado and Su) [7] is to find the fraction of observation values outside of
the bid/ask spread on the first day of each week. The sigma value used to derive the theoretical price is the value that gives the
least error at H = 0.5 for the prior day’s observations and ensures the majority of theoretical prices are within the spread. After
noting the average deviation an alternative H value is used to see if the error has become even smaller. For this experiment
Option "A’ weekly option price has been analysed starting from January 3rd 2013. In this next experiment I have recorded
the sigma value and Hurst parameter to 2 decimal places. Results support the hypothesis that H=0.5 isn’t the optimal value
to minimise the average deviation between midpoint of spread and theoretical price. In general optimum Hurst values ranged
between 0.36 to 0.47. In financial application for striving to get the theoretical price as close to observed prices as possible, the
option pricer needs to find a minimum Hurst value and sigma value for the least error for the prior day. These parameters will
be used to calculate the call price for the following day.

7.1 Finding the Stationary Points for Option A in the First Week 2013

Figure 4 shows the minimum average absolute error for different values of H and sigma. In order to computationally find this
value we must find the minimum element of the average absolute error matrix - array of values influenced by sigma and H.
Using the index of the minimum value and knowing the step size we find the H=0.47 and sigma = 0.215 (see appendix 14.4
on MATLAB code). Substituting these values into the next day’s prediction of the call option price we see that the average
deviation from the midpoint is 0.2695. This is a significant improvement compared to the original Black Scholes that estimates
in the prior day sigma=0.2094 for the minimum error and has an average deviation the next day of 0.2956. This builds the case
that financial derivative companies should be using the fractional Black Scholes model for determining the price of call options.

8 Conclusions and Future Work

For stock price and call option predictions it can be seen that for different H values the error has reduced. Fractional Brownian
Motion has been removed of arbitrage by the Wick product but the difficulty is to explain its economic significance. The
traditional geometric Brownian model is easier to understand as it ensures that the stock price is always positive and that there



Figure 1: Comparing the deviations between prediction and true value for H = 0.5 and the Hurst value that gives minimum
error denoted as ”Minhurst”. The implied volatility is the sigma value that gives the minimum error for the prior day at
H = 0.5. Evidently the error is improved by choosing an alternative H value.

H=0.5
B=0.5 Hurst fraction H=0.5 Min hurst
implied for outside average average
Week vwvolatility minimum spread Minhurstfractionoutsidespread dewiation deviation
1 .2200000 .4700000 .54703B8 .4764706 L2724000 .2684000
2 .1700000 .3900000 .6058824 . 6000000 . 3882000 .37589000
3 .2100000 .4600000 .6781609 .5688655 L2672000 .2744000
4 .1800000 .4600000 .5328847 .4473684 .2506000 .2428000
5 .1600000 .3600000 .6625000 . 6062500 .4256000 .3808000
8 .2000000 .4500000 .60625300 .3562500 .3758000 .3626000
ki .1600000 .3700000 .5375000 .5312500 .4390000 .4124000
8 .1600000 .4300000 .5285714 .507142%9 .3378000 .3454000
] .1700000 .4300000 .5642857 .5285714 .3072000 .2958000
10 .1600000 .4500000 .6071420 .5642857 .4121000 .4036000

Figure 2: Graph showing the minimum H value and sigma value to ensure the prior day’s deviation is at its smallest.
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are two parts - a random component and a deterministic part that sets the trend. However the advantage of the Wick product
needs to be considered as without it fBm models would contain arbitrage.

An idea to improve accuracy of predictions is to consider multiple fractional Brownian motion. Perhaps the random part
of the model as just a single component simplifies the model. It’s known that a stock price is not just influenced by one factor
but a multiple of factors such as the global economy, the success of a company and investors selling shares to liquify their profits
etc. Multiple fractional Brownian motion (MFM) is a continuous Gaussian process whose pointwise Holder exponent can be
prescribed and evolves with time t. For fBm the pointwise Holder exponent and Hurst value are equal and constant. The next
stage would be to make the Hurst value a function of time. Assuming that H is constant could be an over simplification since
evidently stock price behaviour changes in time. For example one moment oil may be the investment of the year because of the
growing need of the commodity but next moment there is volatility due to the uncertainty of a coming war in the Middle East.
For the next step we will of course have to show that these multiple fractional Brownian motion models are arbitrage free
before we can carry out the experiments. If the multiple fractional Brownian motion model can be proved to be more accurate,
there is no reason why we should stop there. In other work for improving the call price prediction there is the Kurtosis and
Skewness Adjusted Black Schole’s model. In the past the natural logarithm of stock price change is considered to be a normal
distribution, but in reality the tails are fatter which imply that extreme price movements are more likely, The model allows for
changing the kurtosis and the skewness to reflect better the motion of the stock price. Mathematicians such as Corrado and Su
[7] have shown that this model is effective. Although this model is still based on Brownian motion, it leads us to the question
as to whether the results would be even better when fractional Brownian motion was incorporated into the equation.



9 Appendix

9.1 Graphs Comparing the Average of all the Models with the Observed Price

Here are the graphs for years 2007 to 2012 comparing the average model (blue line) with the observed prices (red line). The
first graph for each year is the best model.
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9.2 Results from Comparing Errors between Stock Price Models

2007 Sample of 100 Norm Errors between Observed Price and Model

One-Sample Kolmogorov-Smirnov Test

H=0.5inf H=0.7 inf H=0.8 inf
H=0.51norm | H=0.5 2 norm norm H=0.7 1norm | H=0.7 2norm norm H=0.81norm | H=0.8 2norm norm GBM1norm | GBM2norm | GBMinfnorm
N 100 100 100 100 100 100 100 100 100 100 100 100
Mormal Paramsters™? Mean 20018 7658 0914 20595 3208 0909 1.9567 3053 0888 32705 4978 1247
Std. Deviation 41248 12886 01438 48436 07073 01731 AT564 06330 01618 1.91661 26535 04874
Most Extreme Differences  Absolute 178 179 098 186 165 064 219 203 128 186 176 094
Positive 178 179 098 186 165 064 219 203 128 186 176 094
Megative -126 -.085 -.061 -122 -113 -043 -161 -124 -.041 22 =12 -7
Kolmogorov-Smirnov Z 1.780 1.790 979 1.865 1.648 637 2.180 2026 1.276 1.863 1.760 938
Asymp. Sig. (2-tailed) 004 003 293 002 009 812 000 001 077 002 004 342
a. Test distribution is Normal
b. Calculated from data,
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Errar Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2ailed)
Pair1  H=0.5infnorm- -.03324 05314 00631 -.04379 -.02270 -6.256 89 000
GBMinfnorm
Pair2  H=0.7 infnorm - H=0.8 inf 00207 02522 00252 -.00293 00708 821 89 413
o
Pair3  H=08infnorm- -.03587 05261 00526 -.04631 -02543 -6.818 89 000
GBMinfnarm
.
2008 Sample of 100 Norm Errors between Observed Price and Model
One-Sample Kolmogorov-Smirnov Test
H=0.5 inf H=0.7 inf H=0.8 inf
H=0.41norm | H=0.52 norm norm H=0.7 1norm | H=0.7 2norm norm H=0.8 1norm | H=0.8 2norm norm GBMinorm | GBMZnorm | GBMinfnorm
N 100 100 100 100 100 100 100 100 100 100 100 100
Normal Parameters™® Mean 4.8906 a24e 12351 4.0811 9586 12397 4.0382 7797 2413 G.8147 1.4889 3833
Std. Deviation 90739 21183 04002 1.16191 23236 04715 96208 13899 04145 488538 69674 13746
Most Extreme Differences  Absolute 191 167 096 168 176 098 134 125 080 1566 152 118
Positive 191 157 096 169 176 099 134 125 080 156 152 118
Negative -104 -101 -.064 “1E -130 -.053 -.096 -.085 -.038 -107 -105 -077
Kolmogorov-Smimov Z 1.016 1.671 956 1.691 1.768 985 1.341 1.247 797 1.562 1.624 1.184
Asymp. Sig. (2-tailed) 001 014 320 007 004 286 055 089 550 015 019 121
a. Test distribution is Normal
b. Caleulated from data
Paired Samples Test
Paired Differences
§5% Confidence Interval of the
Std. Error Difference
Mean | Std Deviation Mean Lower Upper t dr Sig. (2-tailed)
» Pair1  H=0.5infnorm- H=0.7 inf. -.00456 05672 00567 -.01581 00670 -804 a9 424
Pair2  H=05infnorm - -.14823 14356 01436 - 17671 -11974 -10.325 99 000
GBMinfnorm
Paird  H=0.7infnorm- -14367 14520 01452 17248 - 11486 -0.894 99 000
GBMinfnorm




2009 Sample of 100 Norm Errors

between Observed Price and Model

One-Sample Kolmogorov-Smirnov Test

H=05inf H=0.7inf H=08inf
H=0.5 1norm | H=0.5 2 norm norm H=0.71norm | H=0.7 2norm norm H=0.81norm | H=0.8 2norm norm GBM1norm | GBM2norm | GBMinfnorm
N 100 100 100 100 100 100 100 100 100 100 100 100
Mormal Parameters™® Mean 127939 1.9886 6309 13.4360 20776 6408 132936 2.0611 6342 226189 34185 8078
Std. Deviation 3.76971 48510 11532 3.98504 52075 12823 3.85699 50204 11952 1359191 182064 34959
MostExtreme Differences  Absolute 126 12 049 142 115 066 094 089 084 177 150 423
Positive 12 121 049 142 115 066 034 089 084 177 1860 123
Negative -124 -106 -.035 -.097 -.081 -.044 -071 -.059 -.062 - 147 -A32 -.096
Kolmogorov-Smirmov Z 1.268 1.207 487 1420 1.161 660 944 888 839 1.774 1.500 1.234
Asymp. Sig. (2-tailed) 084 108 972 036 141 776 335 409 482 004 022 095
a. Test distribution is Normal.
b. Calculated from data
Paired Samples Test
Paired Differences
95% Confidence Interval of the
std. Error L
Mean Std. Deviation Mean Lower Upper 1 df Sig_ (2-tailed)
Pair1  H=0.5infnorm- -.27693 36650 03665 -.34965 -.20421 -7.556 89 000
GEMinfnorm
Pair2  H=05infnorm-H=08inf -.00329 15124 01512 -.03330 02672 =217 99 828
S
Pair3 H=08infnorm- -27364 37001 03708 -.34724 -.20005 -7.378 89 .000
GBMinfnorm
.
2010 Sample of 100 Norm Errors between Observed Price and Model
One-Sample Kolmogorov-Smirnov Test
H=0.5inf H=0.7inf H=0.8 inf
H=0.51norm | H=0.52 norm norm H=0.7 1norm | H=0.7 Znorm norm H=0.8 1norm | H=0.8 2norm norm GBM1inorm | GBM2norm | GBMinfnorm
N 100 100 100 100 100 100 100 100 100 100 100 100
Normal Parameters™® Mean 34548 5324 1813 35718 5479 1540 3.5362 5421 1622 3.8020 5902 1748
Std. Deviation 69039 10023 03541 68412 10055 2626 63334 09247 02511 81001 11723 03174
Most Extreme Differences  Absoluts 147 165 108 122 122 27 145 147 075 134 137 095
Positive 147 166 106 122 22 127 148 147 078 12 A37 095
Negative -106 s -046 -104 -.098 -.058 -100 -.093 -.057 -134 -115 -.060
Kolmogorov-Smimnov Z 1.487 1.646 1.046 1222 1221 1.269 1.455 1.470 751 1.343 1.386 952
Asymp. Sig. (2-tailed) 027 009 22 101 102 080 029 .02 62 054 048 325
a. Test distribution is Normal.
b. Calculated from data.
Paired Samples Test
Paired Differences
85% Confidence Interval of the
Std. Error merence
Mean Std. Deviation Mean Lower Upper t df Sig. (2-ailed)
Pair1  H=04infnorm- 00636 04487 00449 -.00255 01526 1.416 89 160
GBMinfnorm
Fair2  H=08infnorm- H=0.7inf | -00185 03684 00368 -00915 00545 | -501 99 617
o
Pair3 H=08infnorm- -.02274 03945 00394 -.03067 -.01482 -5.766 89, 000
GBMinfnorm
2011 Sample of 100 Norm Errors between Observed Price and Model
One-Sample Kolmogorov-Smirnov Test
H=0.5 inf
H=0.51norm | H=0.52norm norm H=0.7 1norm | H=0.7 2norm | H=0.7 infnorm [ H=0.8 1norm | H=0.8 2norm | H=08infnorm | GBM1norm | GBM2norm | GBMinfnorm
N 100 100 100 100 100 100 100 100 100 100 100 100
Normal Parameters™® Mean 2.2604 3436 1032 22340 3384 1009 21892 3346 0997 3.9846 5884 1462
Std. Deviation 71219 09142 02104 80312 10371 02207 BIB0E 09250 02253 207684 28122 05391
Most Extreme Differences  Absolute 133 121 067 180 184 086 151 148 099 165 169 118
Positive 133 126 067 180 184 086 151 148 099 165 169 116
Negative -.097 -.0e7 -.042 -133 -128 -.054 -.008 -.0g6 -077 “AR -108 -.080
Kolmogorov-Smirnov Z 1.327 1.256 667 1.798 1.841 857 1.514 1479 991 1654 1.693 1.162
Asymp. Sig. (2-tailed) 059 085 766 003 002 455 020 025 280 008 006 134
a. Test distribution is Normal
b. Calculated from data.
Paired Samples Test
Paired Differences
45% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper 1 df Sig. (2-tailed)
Pair1  H-0.8 inform- H=0.7 00118 03004 00300 00714 00478 | -394 49 595
infnorm
Pair2 H=0.8infnorm- -.04649 05503 00558 -.06758 -.03539 -831 99 000
GEMinfnorm
Paird  H=0.5infnorm - -.04205 05606 00561 -.05408 -.03183 -7.662 99 000
GBMinfnorm
2012 Sample of 100 Norm Errors between Observed Price and Model
One-Sample Kolmogorov-Smirnov Test
H=0.5inf H=0.8inf
H=0.5 1norm | H=0.5 2 narm nom H=0.7 1norm | H=0.7 2narm | H=0.7 infnorm | H=0.8 1nerm | H=0.8 2norm nom GBMinorm | GBM2norm | GBMinfnorm
N 100 100 100 100 100 100 100 100 100 100 100 100
Normal Parameters™® Mean 2.4842 3869 1144 25111 3922 75 2.5648 3986 1176 48361 7186 1736
Std. Deviation 37965 05803 01989 42651 06260 01798 61405 08550 02179 2 6B546 37147 06991
Most Extreme Differences  Absolute 150 142 0a1 61 36 .09a 170 164 130 460 151 17
Positive 150 142 091 151 136 099 170 164 130 150 151 17
Negative -.075 -.085 -047 -.0a0 -081 -040 =137 -124 -067 S5 -118 -078
Kolmogorov-Smimov Z 1.502 1.424 913 1.510 1.366 .87 1701 1.641 1.296 1.500 1.613 1172
Asymp. Sig. (2-tailed) 022 035 375 02 050 284 006 009 070 022 020 128
a. Test distribution is Normal
b. Calculated from data
Paired Samples Test
Paired Differences
95% Confidence Interval of the
std. Errar arance:
Mean | Std. Deviation Wean Lower Upper t f Sig. (2-tailed)
Pair1  H=0.5infnorm-H=0.7 -.00308 02726 00273 -.00849 00233 1431 89 261
infnorm
Pair2  H=0.5infnorm- -.05912 07465 007468 -.07384 -.04431 -7.920 89 000
GEBMinfnorm
Pair3  H=0.8infnorm-H=0.5 inf 00319 03015 00302 -.00279 00918 1.060 899 292
o




9.3 Results from Predicting Future Values from Short Term Models (10 days)
2007 Short Term Prediction

One-Sample Kolmogorov-Smirnov Test

H=0.5 H=0.7 H=0.8 GBM1
M 100 100 100 100
Mormal Parameters*? Mean 0231 0212 0209 0170
Std. Deviation 01519 01565 01799 01363
Most Extreme Differences  Absolute 086 130 125 108
Positive .086 130 16 103
MNegative -.067 -.094 -125 -.108
Kolmogaorov-Smirnay £ .B57 1.300 1.251 1.076
Asymp. Sig. (2-tailed) 454 068 .088 197

a. Test distribution is Mormal.
h. Calculated from data.

Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper 1 df Sig. (2-tailed)
Pair1  GBM1-H=0.5 | -.00609 .02033 .00203 -01013 -.00206 -2.996 99 .003
Pair2 H=07-H=05 | -00184 02267 00227 -.00634 00266 -812 99 418
Pair3 H=0.7-H=08 .00035 02322 .00232 -.00426 .00496 150 99 .881

2008 Short Term Prediction

One-Sample Kolmogorov-Smirnov Test

H=0.5 H=0.7 H=0.8 GBM1
N 100 100 100 100
Normal Parameters™® Mean 1280 1291 S 0838
Std. Deviation 09329 .08904 10128 06710
Most Extreme Diffarences  Absolute 116 A0 156 086
Positive 116 A01 156 .084
Negative -.084 -077 -134 -.086
Kolmogorov-Smirnoy Z 1.163 1.006 1.657 864
Asymp. Sig. (2-tailed) 134 263 016 444

a. Test distribution is Normal.
h. Calculated from data.

Paired Samples Test

Paired Differences
95% Confidence Interval of the

Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  H=0.8- GBM1 01845 12731 01273 -.00681 04371 1.450 99 150
Pair2 H=08-H=07 | -01692 14307 01431 -.04530 01147 -1.182 99 240
Pair3 H=08-H=05 | -01674 13652 01365 -.04382 01035 -1.226 99 223




2009 Short Term Prediction

One-Sample Kolmogorov-Smirnov Test

H=0.5 H=0.7 H=0.8 GEM1
M 100 100 100 100
Normal Parameters™® Mean 1647 1579 1526 1022
Std. Deviation 11348 10856 10551 .07849s
Most Extreme Differences  Absolute .09s 104 104 102
Positive 095 104 104 .094
Megative -.080 -.073 -.074 -102
Kalmogorov-Smirnov £ .a51 1.035 1.042 1.017
Asymp. Sig. (2-tailed) 327 234 228 252
a. Test distribution is Mormal.
h. Calculated from data.
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  H=0.8-H=07 -.00531 15284 01528 -.03566 02503 -.347 a8 728
Pair2 H=0.8-GEM 05048 12373 01237 025493 07503 4.080 a8 oo
Paird H=0.5-GEM1 06259 13766 01377 03527 .08990 4546 99 .0oo
Paird H=08-H=05 -01211 14451 01445 -.04078 {01657 -.838 a8 404
2010 Short Term Prediction
One-Sample Kolmogorov-Smirnov Test
H=0.5 H=0.7 H=0.8 GEM1
M 100 100 100 100
Mormal Parameters®® Mean 0659 0687 0733 0539
5td. Deviation 04940 0573 04792 042586
Most Extreme Differences  Absolute 16 120 094 105
Positive 16 120 0G4 04
Megative -.094 -120 -.066 -105
Kolmogorov-Smirnov £ 1.1549 1.202 843 1.046
Asymp. Sig. (2-tailed) 136 A1 336 224
a. Test distribution is Mormal.
b. Calculated from data.
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  H=05-H=07 -.00276 07510 00751 -.01767 01214 -.368 =1e] 714
Pair2 H=05-H=08 | -00743 07094 .00709 -02151 00664 -1.048 99 .297
Pair3 H=0.5- GBEM1 01208 06443 00644 -.00073 02484 1.871 =1e] 064
2011 Short Term Prediction
One-Sample Kolmogorov-Smirnov Test
H=0.5 H=0.7 H=0.8 GEM1
M 100 100 100 100
Mormal Parameters®®? Mean 0518 0801 0544 0468
Std. Deviation 03531 04054 04083 03405
Most Extreme Differences  Absolute 077 108 A .094
Positive o077 A07 121 084
MNegative -.07s -.108 -.092 -.088
Kolmogorov-Smirnov Z 7 1.085 1.212 a4
Asymp. Sig. (2-tailed) A8z a0 106 334
a. Test distribution is Mormal.
h. Calculated from data.
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
FPair1 H=0.7-H=05 -.00140 05540 00554 -.01238 00954 -.253 a8 8o
Pair2 H=0.7-H=0.8 -.00423 05758 00576 -.01565 .oov20 -.734 a8 465
Pair3 H=0.7- GBM1 00334 05513 00551 -.00760 01428 606 99 546
Pair4 H=0.5- GEM1 00474 04528 00453 -.00425 01373 1.047 a4 .288




2012 Short Term Prediction

One-Sample Kolmogorov-Smirnov Test

H=0.5 H=0.7 H=0.8 GBM1
M 100 100 100 100
Narmal Parameters®® Mean 1021 0876 .0e93 0678
Std. Deviation 07785 06477 07291 04812
Most Extreme Differences  Absolute A1 108 095 14
Positive A1 108 .095 114
Megative -.094 -.080 -.088 -.080
Kolmogorov-Smirnov Z 1.113 1.078 54 1.138
Asymp. Sig. (2-tailed) 168 REL 323 148

a. Testdistribution is Mormal.
b. Calculated from data.

Paired Samples Test

Paired Differences
95% Confidence Interval of the
std. Error Difference
Mean Std. Deviation Mean Lower Upper 1 df Sig. (2-tailed)
Pair1  H=0.7-H=0.5 | -.01448 .09451 00945 -.03324 00426 -1.533 99 128
Pair2 H=0.7-H=0.8 | -01163 09674 00967 -.03082 00757 -1.202 99 232
Pair3 H=0.7- GBEM1 01887 08142 .oog14 .003vz2 03603 2441 L] 016
Pair4 H=0.5- GBM1 03436 .08855 .0088s 01679 05183 3.8 99 .0oo

9.4 Results from Predicting Future Values from Long Term Models

2007 Long Term Prediction

One-Sample Kolmogorov-Smirnov Test

H=0.5 H=0.7 H=0.8 GBM1
M 100 100 100 100
Mormal Paramaters™? Mean .0oaz2 0091 009 0717
Std. Deviation .00589 .00705 00667 05326
Most Extreme Differences  Absolute 109 104 01 .092
Positive 109 100 A01 .092
MNegative -.081 -104 -.09 -.090
Kalmogorov-Smirnoy Z 1.086 1.037 1.010 .8zo0
Asymp. Sig. (2-tailed) 189 233 259 .366

a. Test distribution is Mormal.
h. Calculated from data.

Paired Samples Test

Paired Differences

95% Confidence Interval of the

Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  GBM1-H=0.5 06343 05367 005837 05278 07407 11.817 99 .000
Pair2 H=0.5-H=0.7 -.00o88 .ooevy .oooas -.00262 .oooss -1.002 k] Bl
Paird H=05-H=0.8 -.0008s8 .ooed 000384 -.00255 .ooory -1.045 a8 .299

(60 days)



2008 Long Term Prediction

One-Sample Kolmogorov-Smirnov Test

H=0.5 H=0.7 H=0.8 GEM1
M 100 100 100 100
Normal Parametars®® Mean 0594 0674 0558 2149
Std. Deviation 04166 04353 04671 8220
Most Extreme Differences  Absolute 086 .092 134 121
Positive 086 .092 134 Riele]
Megative -.082 -.068 - 116 =121
Kolmogaorov-Smirnov 2 .B&T a1 1.341 1.206
Asymp. Sig. (2-tailed) 454 364 055 09

a. Test distribution is Mormal.
h. Calculated from data.

Paired Samples Test
Faired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  H=0.8-H=05 | -.00347 06086 00609 -.01554 .00861 -.570 99 570
Pair2  H=0.8-H=0.7 | -.01152 06069 00607 -.02356 .00053 -1.897 99 061
Pair3 H=0.8-GBM1 -154904 19066 .01907 - 19687 -12121 -8.34 99 .000
Pair4d  H=0.5-GBM1 - 155857 19275 .01928 -19382 -11732 -8.071 99 .000

2009 Long Term Prediction

One-Sample Kolmogorov-Smirnov Test

H=0.5 H=0.7 H=0.8 GEM1
M 100 100 100 100
Normal Parameters™® Mean J1368 1535 1543 4769
Std. Deviation 0182 L0665 12738 34282
Most Extreme Differences  Absolute 123 128 27 .0oa
FPositive 123 128 A27 .09a
Megative -.090 -.084 -122 -083
Kaolmogorov-Smirnoyv £ 1.227 1.285 1.270 891
Asymp. Sig. (2-tailed) .098 074 079 279

a. Test distribution is Mormal.
h. Calculated from data.

Paired Samples Test

Faired Differences

95% Confidence Interval of the

N Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1 H=05-H=0.7 -01672 14481 01448 -.04545 .01202 -1.154 99 251
Pair2 H=05-H=08 -01754 15918 01592 -.04913 .01404 -1.102 99 273
Pair3 H=0.5- GEM1 -.34010 36247 03625 -41202 -.26818 -9.383 99 .0oo




2010 Long Term Prediction

One-Sample Kolmogorov-Smirnov Test

H=0.5 H=0.7 H=0.8 GEM1
M 100 100 100 100
Mormal Parameters®®? Mean .0289 0269 .0282 2154
Std. Deviation 02067 01818 02326 15618
Most Extrerne Differences  Absolute A2 .098 123 104
Positive 21 .09s 18 104
Megative -.082 -077 -123 -.088
Kalmogorov-Smirnov £ 1.210 .8gs 1.228 1.036
Asymp. Sig. (2-tailed) 07 287 098 233
a. Test distribution is Mormal.
h. Calculated from data.
Paired Samples Test
Faired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
FPair1  GBM1-H=05 06343 05367 00537 .05278 07407 11.817 k] .ooo
Pair2 H=0.5-H=0.7 -.00088 .ooere .oooas -.00262 .oooas -1.002 a8 Bed ]
Paird H=0.7-H=08 .0oooo 00885 .0oosa -00178 00176 .00 99 999
Paird H=0.7 - GEM1 -.06255 05388 00539 -07324 -05185 | -11.609 99 .0oo
2011 Long Term Prediction
One-Sample Kolmogorov-Smirnov Test
H=0.5 H=0.7 H=0.8 GEBM1
M 100 100 100 100
Mormal Parameters®® Mean 0225 0261 .0281 1013
Std. Deviation 01837 01843 01878 07202
Most Extrerne Differences  Absolute 133 094 118 100
Fositive 133 0G4 A5 00
Megative - 116 -.091 -.087 -.080
Kolmogorov-Smirnov Z 1.330 838 1.153 1.002
Asymp. Sig. (2-tailed) 058 342 140 268
a. Test distribution is Mormal.
b. Calculated from data
Paired Samples Test
Faired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1 H=0.5-H=0.7 -.00362 02963 00296 -.00950 0022 -1.223 a9 224
Pair2 H=0.5-H=08 -.00568 02927 00243 -.01148 00013 -1.940 a8 055
FPair3 H=0.5- GEM1 -.07886 07639 00764 -.05402 -.06370 -10.323 a9 .ooa




2012 Long Term Prediction

One-Sample Kolmogorov-Smirnov Test

H=0.5 H=0.7 H=0.8 GEM1
N 100 100 100 100
Mormal Parameters®® Mean 0331 .0282 0606 1094
Std. Deviation 02557 02192 04760 07857
Most Extreme Differences  Absolute 113 102 108 132
Positive 13 .097 105 132
MNegative =113 -102 =10 -.086
Kolmogorov-Smirnov Z 1.133 1.024 1.051 1.317
Asymp. Sig. (2-tailed) 153 245 219 062

a. Test distribution is Mormal.
h. Calculated from data.

Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  H=0.7-H=0.5 | -.00493 03144 .00314 -01117 00131 -1.568 99 120
Pair2 H=0.7-H=08 | -.03242 05266 00527 -.04287 -.02197 -6.156 99 .000
Pair3  H=0.7- GBM1 -.08124 .08194 .00819 -.08750 -.06499 -8.915 99 .000
Paird H=0.5- GBEM1 -.07632 .08207 .00821 -.09260 -.06003 -9.298 99 .000

9.5 MATLAB Code for Optimising Option Pricing

stock=xlsread('stock.xlsx') ;
strike=xlsread('strike.xlsx');
time=xlsread('time.xlsx");
nidpoint=xlsread('midpoint.xlsx");
N=170:

dl=zeros (N,1);

d2=zeros (N,1);

callprice=zeros (N,1):
absoluteerror=zeros (N, 1)

=teps=60;

averageerror=zeros (steps,steps);
t=(0.6-0.3) /steps;

for index=l:steps+1l

H=0.3+ (index-1) *t;

for k=l:steps+l

sigma=0.104 (k-1) *t;

for g=1:N
dlig,1l)={log(stock(g,1)/strike(g,1))+0.05*cime (g,1))/ ((time(g,1)" (H))*sigma)+1l/2*sigma* (cime (g,1) “H):
d2 (g,1)=dl(g,1l)-sigma*time (g, 1) ."H;

callprice(g,l) = stock(g,l)*normecdf (dl(g,1))-strike(g,1l) *exp(-0.05*time (g,1) ) *normedf (d2 (g,1)):
absoluteerror(g,l)= abs (callprice(g,l)- midpoint(g,1)):

end

averageerror (index, k) =mean (absoluteerror);

end

end

H=meshgrid(0.3:t:0.6);
zigma=meshgrid(0.10:t:0.104(=2teps) *t) ;
mesh (H, sigma, averageerror)

xlabel ('H')

ylabel ('sigma')

zlabel ('average error')

hold on

plot3(0.47,0.215,0.2905,"+")

for k=1:61
smallestrowelement (k,1l)=min (averageerror(k,:))

end
[val, ind]=min(smallestrowelement)
row=ind

L=averageerror (row, :):

[val,ind]=min (&) ;

column=ind;

H=0.3+({row-1) *t

2igma=0.10+4+ ({column-1)*¢



9.6 Notation

MNotatloms:
1 ... Wienerapace [0, 1] vesp. C[[0, 1], B™)
F ... natural filtration
H . L0, 1] vesp. L3{[0, 1], B™)
HPE | tenserproduct 2 L[, 1]5), H® | gymmetric tesorproduct
H .. Cameron-Martin-space © 0, elements are paths with derivative in H
W:F —R .. Wiener-meassore on {3
A = A1) ... Brownkan Motlon (= coordinate procsss on (82, F, W)
W H — L3 . defined by Wik) = _ﬂ: fudd
&y ... Wiener palynomials, fonctionals of form polyvaomial{W (k) .., W(HL)
81 ... r-}-'lhuim-a] functionals, © S
&P LP) contalning E-times Malllavin differentiable functionals
o m_FIﬁ"F. smooth Wiener functionals
AA™ L {m-dimensional) Lebesgue-measiire
o™ L (edimensional) standard Gawssian measire
V... gradient-operator on B™
LR H) .. Hevalued randome-variables st [ )] - ||edl = 2
D ... Malllavin derivative, operator LP{{1) — LP{01 H)
d ... = I the adjoint operator, also: divergence, Skorohod Integral
L .. =fo D Omsteln-Ullenbeck operator LP(TY) — LP({})
Wer | Sobolev-apaces bullt on B® e Wk
i ... {for functions f : R — R) shople differentiation
& ... adjelnt of 9 on LR, &)
L .. =i, one-dimensional O-operator
ih. iy ... partial derbvatices wrt. r;. x; ete B
L .. generator of m-dimensional diffuskon process. for stance £ = EVd;+8'0;
Hy ... Hermite-polynomials
D] ... n=dimensiosal simplex {li sh<..<tp<it}C [ﬂ'. l]“
Ji-) .. Terated Wiener-Tto Integral. operator L2[A] ta. ¢ L2{02)
Cn - 0*® Wiener Chaos
ar ... mltiines (Aoite-dimensional )
X . medimensional diffusion process glven by SDE, driven by d BAls
A=AlX) .. < DX DX »p. Malliavin covariance matrix
V. W . osectorfields on B™, seen as map B™ — B™ or as first order differential
operator
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