
Fractional Brownian Motion for Stock Price and Call Price Modelling

Abstract

In order to forecast future stock prices and option prices, models have traditionally been constructed with the random element
determined by Brownian motion. It’s known that Brownian motion is part of the generalised form named fractional Brownian
motion (fBm) which has a varying Hurst parameter between 0 and 1. Brownian motion has a H value equal to 0.5. In this
dissertation we explore the background theory to provide an improved stock price and call option price model. We have shown
that alternative H values can produce better predictions for the stock price and for the call option price. Also when H = 0.5 in
the Fractional Brownian motion model the stock price proved to be better than the original geometric Brownian motion (gBm)
model even though theoretically they should have been the same. For a particular call option we achieve a method for finding
the optimum H value to minimise the error.

1 Introduction

At the present time there is a growing amount of research on the theory of applying fractional Brownian motion (fBm) to the
stock market. However there seems to be a lack of data explicitly supporting the theory showing that fractional Brownian
motion has better results than the traditional model Brownian motion to predict future stock prices and call option prices. The
observed stock data have been taken from Yahoo finance and the options data downloaded from the internet site optionsdata.net.
If the results show that fBm stock price model is better for speculating on the stock market than Brownian motion stock price
models, then a trader would prefer to use this as a tool in order to go long or short on a particular stock. Also derivative
companies who offer options would be advised to use the fBm Black Scholes equation to determine the price of an option to
safeguard the company from a loss and allow them to make a profit in the options’ business.

2 The Role of Brownian Motion for Stock Price Modelling

2.1 Properties of Brownian Motion

Brownian motion is a random process that depends continuously on t ∈ [0, T ] and satisfies the following conditions [24]:

• B(0) = 0.

• For 0 ≤ s ≤ t ≤ T the random variable given by the increment B(t) − B(s) is normally distributed with mean zero and
variance t-s. Equivalently B(t)−B(s) ∼

√
t− sN(0, 1).

• For 0 ≤ s < t < u < v ≤ T the increments B(t)−B(s)and B(v)−B(u) are independent.

• For computational purpose we discretize Brownian motion where δt = T
N .

• The derivative of Brownian motion dB(t)
dt is used as input noise in dynamical systems.

• Self similarity which means invariance in distribution under a suitable change of scale.

• Continuity

• Normality - the increments Bs+t −Bs have a normal distribution N(0, t)

• Markov property - the conditional distribution Bt given information up to time s where s < t depends only on B(s)

2.2 Problems of Brownian Motion as a Model of Stock Price

• When on its own there is a probability = 1
2 that Brownian motion is negative. However the stock price is never negative

and has some growth element. Therefore the model requires a positive deterministic function of time as well.

1



2.3 Geometric Brownian Motion Model of the Stock Price

Brownian motion on its own would lead to the stock price having negative values. Stock prices are always greater than zero
so it’s written as an exponential which can only be positive. We will define the differential which contains two parts: the
deterministic part to permit trend in the stock price and the stochastic elements to allow fluctuations of the price.
dSt
St

= µdt+ σdBt

Determining the parameters µ and σ

dSt = Stµdt+ StσdBt
Using Ito’s representation the solution is

lnSt+1

St
= [µ− σ2

2 ]dt+ σdBt

We will define µ̂ as the mean of the natural logarithm of the stock price rate change.
µ̂ = E[lnSi+1

Si
]

E[lnSt+1

St
] = E[(µ− σ2

2 )dt] + E[σdBt]

E[lnSt+1

St
] = E[(µ− σ2

2 )dt]

û = E[µ− σ2

2 ]dt

û = E[µ− σ2

2 ]τ

µ = û
τ + σ2

2

[lnSt+1

St
]2 = [µ− σ2

2 ]2dt2 + 2[µ− σ2

2 ]dtσdBt + [σdBt]
2

E[(lnSt+1

St
)2] = E[[µ− σ2

2 ]2dt2] + σ2t

We will define v2 as the volatility of the natural logarithm of the stock price rate change.
v2 = E[(lnSt+1

St
)2]− E[lnSt+1

St
]2

v2 = σ2t
Standard deviation =σ = v√

t

3 Fractional Brownian Motion

Brownian motion belongs to a family called fractional Brownian motion (fBm) with varying Hurst values in the interval [0, 1].
The traditional stock price models have been based on Brownian motion B(t) with H = 1

2 . It’s important to discuss whether
this is the optimum fBm to model the stock price. We will firstly list the main properties of fBm.

• Gaussian process t ∈ R

• Eµφ [BH(t)] = 0

• For simplicity assume BH(0) = 0

• Eµφ [BH(t)BH(s)] = 1
2 [t2H + s2H − (t− s)2H ]

• V arµφ(BH(t)) = Eµφ [BH(t)2] = t2H

• For H ∈ (0, 1) fractional Brownian motion is self similar in the sense that BH(αt) has the same laws as BH(t)

3.1 Correlation of Fractional Brownian Motion

Fractional Brownian motion can be divided into three groups depending on the nature of its correlation:

3.1.1 No Correlation fBm Process

for H = 1
2

The observations are uncorrelated.
This is practical if the trader is a follower of the Efficient Market Hypothesis believing that increments are independent.
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3.1.2 Long Memory fBm Process

for 1
2 < H < 1

ρ(k) > 0 for k large enough.∑∞
−∞ |ρ(k)| =∞

The process Xi has long memory and long range dependence.
This long range dependence is a property that makes it useful for stock price modelling. Some traders would argue that stocks
moves in trends which conflict with the Efficient Market Hypothesis idea that prices are unpredictable.

3.1.3 Negative Correlated fBm Process

for 0 < H < 1
2

ρ(k) < 0 for k large enough∑∞
−∞ |ρ(k)| <∞

The process is also said to have short-range dependence.
Short-range dependence is a measure of the decline in statistical dependence of two events separated by successively longer
spans of time.

3.2 Drawback of fBm as a Stock Price Model - not a Semi-Martingale

If an investor has a portfolio of shares and bonds and is guaranteed not to make a loss, therefore we have an arbitrage situation.
It’s natural for the stock market to aim to eliminate giving away guaranteed profits so the model shouldn’t allow it either. To
be free from arbitrage a stock price model’s stochastic part must have the martingale property. Fractional Brownian motion is
only a martingale at H = 1

2 . For H 6= 1
2 fractional Brownian motion isn’t a semi martingale for the following reasons:

• H < 1
2 the quadratic variation for BH doesn’t exist so therefore can’t be a semi-martingale.

• for H > 1
2 the process will be in the following form BHt = BH0 + M + A. Suppose BH is a semi martingale therefore

[M,M ]t = [BH , BH ]t = 0. This implies BHt = B0 = 0 a.s for all t. Hence BHt = A so has finite variation which leads to a
contradiction.

The fact that fBm lacks the martingale property is a major drawback which creates the impression of arbitrage opportunities in
speculating in the stock market. This is against the stock market principle that there is ’no such thing as a free lunch.’ When
trading on the stock market there is always a possibility of losing, therefore the model shouldn’t say otherwise.

3.3 Integration with respect to Fractional Brownian Motion

We will aim to use stochastic calculus to integrate a function with respect to fBm.
Regarding integration with respect to fBm there are two types: pathwise integration and Wick Ito integration. In the following
section we will discuss both types and explore the relationship between them.

3.3.1 Pathwise Integration

Let π : a = t0 < t1 < t2, · · · < tn = b be a partition of [0, T ]∫ T
0
f(t, ω)dBHs = lim|∆|7→0

∑n−1
i=0 f(tk, ω)[BH(ti+1)−BH(ti)]

|∆| = max0≤k≤n−1(tk+1 − tk)
These integrals don’t have expectation zero.

3.3.2 Wick Ito Skorokhod Integration

In order for fBm to be arbitrage free we need the martingale property
E[X(t)|Fs] = X(s)

X(t) = X(s) +
∫ t
s
f(u)dBHu

Applying expectations to both sides
E[X(t)] = E[X(s)] + E[

∫ t
s
f(u, ω)dBHu ]

Unfortunately in the case when f(u) is a stochastic function E[
∫ t
s
f(u, ω)dBHu ] 6= 0

For X(t) to be a martingale we need a different operator to ensure the integral becomes zero.
The Wick integral product is defined as:∫ T

0
f(t, ω) � dBHs = lim|∆|7→0

∑n−1
i=0 f(tk, ω) � [BH(ti+1)−BH(ti)]

In contrast to pathwise integration

E[
∫ T

0
f(t, ω) � dBHs ] = 0
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We define F (ω) and G(ω) [30] .
F (ω) =

∑
α∈I aαHα(ω)

G(ω) =
∑
β∈I aαHβ(ω)

• I is the set of all multi indices

• α = (α1, α2, · · · , αm) ∈ I

• Hα(ω) = hα1
((ω, e1))hα2

((ω, e2)) · · ·hαm((ω, em))

Consequently the Wick product of F (ω) and G(ω) is the following:
(F �G)(ω) =

∑
α,β∈I aαbβHα+β(ω)

In this case we will let f, g ∈ L2
φ(R). This implies that f,g are deterministic functions it can be shown that [24]

(

∫
R

fdBH) � (

∫
R

gdBH) = (

∫
R

fdBH)(

∫
R

gdBH)− (f, g)φ (1)

Applying expectations to both sides we note two main properties

• E[(
∫
R
fdBH) � (

∫
R
gdBH)] = 0

• For deterministic functions
E[(

∫
R
fdBH)(

∫
R
gdBH)] = E[(

∫
R
f � dBH)(

∫
R
g � dBH) = (f, g)φ

3.3.3 Relation between the Wick Integral and Pathwise Integral with respect to Fractional Brownian Motion

The relation between the Wick integral and pathwise integral is the following [20]∫ T
0
F (BH(t))dBH(t) =

∫ T
0
F (BH(t)) � dBH(t) +H

∫ T
0
F ′(BH(t))t2H−1dt

We wish to find a condition for the pathwise integral and Wick Ito integral to be the same.

E[
∫ T

0
F (BH(t)) � dBHt ] = 0

E[
∫ T

0
F (BHt )dBHt ] = E[H

∫ T
0
F ′(BHt )t2H−1dt]

When F ′ = 0 ie when the function is deterministic.∫ T
0
F (BHt ) � dBHt =

∫ T
0
F (BHt )dBHt

If function F is deterministic ie a non random function we can ensure a linear process X(T ) which is in the form

X(T ) = X(0) +
∫ T

0
F (BHt )dBHt

can become a martingale.

3.3.4 Properties of Wick Ito Integration

Let us denote the space L2
φ

φ : RxR 7→ R
φ(s, t) = H(2H − 1)|t− s|2H−1

For Borel measure functions f,g [0, T ] 7→ R

||f ||2φ =
∫ T

0

∫ T
0
f(s)f(t)φ(s, t)dsdt

(f, g)φ =
∫ T

0

∫ T
0
f(s)g(t)φ(s, t)dsdt

For a deterministic function f ∈ L2
φ([0, T ])

fn be the step function approximating f
fn =

∑
i akχ[tk,tk+1)(t) 7→ f(t)∫ T

0
fn(t) � dBHt =

∑
ak[BHtk+1

−BHtk ]

For the continuous case when n 7→ ∞∫ T
0
f(t) � dBHt = limn 7→∞

∫ T
0
fn(t) � dBHt

We will now list the main properties of Wick Ito integration.
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• E[
∫ T

0
f(t) � dBHt ] = 0

• E[
∫ T

0
f(t) � dBHt

∫ T
0
g(t) � dBHt ] = (f, g)φ

• E[(
∫ T

0
f(t) � dBHt )2] = ||f ||2φ

3.4 Geometric Fractional Brownian Motion

Similar to geometric Brownian motion the stock price differential has a deterministic component and a stochastic part. However
we use instead fractional Brownian motion to drive the random component.
dSt = µStdt+ σStdBH(t)
µ ∈ R, σ > 1 and H ∈ ( 1

2 , 1)

The solution to the differential equation is the following:
St = S0exp(µt+ σBH(t))

A stock price model should have a separate trend part and noise part. The latter part should just be noise. It shouldn’t
dictate the direction of the stock price. The general trend is calculated by µ, the average of the change of stock price. A
stochastic process that has an unpredictable nature is called a martingale.

However fractional Brownian motion doesn’t have the martingale property, but has long term memory for H > 1
2

f(BH(t)) = f(BH(0)) +
∫ t

0
f ′(BH(0))dt

E[f(BH(t))] 6= f(BH(0))

To remove arbitrage we need to use the Wick product which allows the expectation of the stochastic component to be zero.
Therefore the stochastic differential equations becomes
dSt = µStdt+ σSt � dBH(t)

Wick Exponential

Before we solve a stochastic process involving a Wick product, we need to know how to interpret an exponential containing the
Wick product.
Firstly let us define X�n.
X�n = X �X � · · · �X (n factors)
exp � (X) =

∑∞
n=0

1
n!X

�n

BH(t) =< w,χ[0,t](.) >= (χ[0,t](.), ek)φ < ω, ek >
It can be proven that [24]

exp � (σBH(t)) = exp(σBH(t)− σ2tH

2 )

Using Wick Integrals to solve the Fractional Stochastic Equations

Let the differential of a stochastic process St contain the Wick product.
dSt = µStdt+ σSt � dBH(t)
S(0) = S0
dSt
dt = µSt + σSt �WH(t)
dSt
dt = [µ+ σWH(t)] � St
dSt = [µt+ σ

∫ t
0
WH(s)ds] � St

Integrating both sides.
St = S0exp

�(µt+ σ
∫ t

0
WH(s)ds)

St = S0exp
�(µt+ σBH(t))

The Wick product is for stochastic proccesses so we can factor out the deterministic part
St = S0exp(µt)exp � (σBH(t))

St = S0exp(µt− σ2t2H

2 + σBH(t))
Eµφ [St] = S0exp(µt)

4 Fractional Black Schole’s Equation

The original Black Schole’s equation is a means to calculate the fair option price. It eliminates arbitrage opportunities for both
the buyer and the seller of the call option. The equation is based on the assumption that the stock price follows a geometric
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Brownian motion with constant drift and volality. Perhaps this assumption is wrong and so we aim to enlarge the scope and
assume the stock price follows a geometric fractional Brownian motion. Let F (S, T ) be the call option price where T is the
duration of the period, ST is the stock price at the end of the period, K is the strike price, ρ the bank interest rate and σ is
volatility of the stock.
F (S, T ) = S0φ(d1) +Kexp(−ρT )φ(d1 − σTH)

d1 =
ln
ST
K +[ρ+σ2

2 ]T

σTH

φ(t) = 1√
2π

∫ t
−∞ exp(− s

2

2 )ds

Evidently when H = 1
2 we have the traditional Black Schole’s equation. For this equation there is now an additional unknown

value H as well as σ. In the experiments below we will choose the values that will minimise the error between the predictions
and observed values.

4.1 Arbitrage opportunities with Fractional Brownian Motion

We are going to show that pathwise integration with respect to fBm will create arbitrage opportunities for the trader. [22]

Example

Let us define a portfolio V θ(t) composed of a quantity of stocks S0(t) and bonds S1(t) and for simplicity let σ = 1.
V θ(t) = φ0(t)S0(t) + φ1(t)S1(t)
φ0(t) = 1− exp(2BH(t))
φ1(t) = 2(exp(BH(t))− 1)
dS0(t) = rS0(t)dt
dS1(t) = S1(t)µdt+ S1(t)σdBH(t)
S1(t) = exp(µt+ σBH(t))

V θ(t) = [1− exp(BH(t))]exp(rt) + 2exp(BH(t)− 1)exp(BH(t) + rt)
V θ(t) = [exp((BH(t))− 1]2exp(rt) > 0 for a.a < t, ω >
P (V θ(t) ≥ 0) = 1

Therefore the portfolio is predicted using the fBm model to have guaranteed gains on the stock markets. In the real world it’s
rare to have guaranteed gains when speculating on the stock model except for illegal situations such as price fixing or inside
trading.

4.2 Girsanov Theorem applied to Fractional Brownian Motion

BHt is fractional Brownian motion under the measure P.
We will define B̃Ht on the σ algebra FHt under the new measure Q

B̃Ht = BHt +
∫ t

0
γsds

Let K be the solution of the integral equation∫
R
K(s)φ(t, s)ds = γ(t) then

B̃Ht is a fractional Brownian motion under the probability measure Q on (Ω,FHt ), which is equivalent with P .
The Radon-Nikodym derivative which relates both measures is the following [29]:

dQ

dP
= exp(−

∫
R

K(t) � dBH(t)− 1

2
|K|2φ) = exp � (− < ω,K >) (2)

It can be shown that [29]
E[dQdP ] = 1

This implies that we can use B̃Ht on the measure Q.

4.3 Arbitrage Free Portfolio Trading Strategy θ(t) = θ(t, ω) = (u(t), v(t))

Here we are going to apply a trading strategy using Wick integrals to show that this portfolio is free from arbitrage
This is a FH

t adapted 2 dimensional process giving the number of units u(t),v(t) held at time t of the bond and the stock.
The corresponding value process
Zθ(t, ω) = u(t)A(t) + v(t) �X(t)

Self-Financing Portfolio

dZθ(t, ω) = u(t)dA(t) + v(t) � dX(t)
For the stock price X(t)
dX(t) = µX(t)dt+ σX(t) � dBH(t)
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dZθ(t, ω) = u(t)dA(t) + v(t)µ �X(t)dt+ σv(t) �X(t) � dBH(t) where t ∈ [0, T ]

For the bank account or bond A(t)
dA(t) = ρA(t)dt

It can be shown that [31]

exp(−ρt)Zθ(t, ω) = Zθ(0, ω) +
∫ t

0
[exp(−ρs)σv(s) �X(s)] � dB̃H(s)

Let us define f(t, ω) = exp(−ρs)σv(s) �X(s)

Admissible Portfolio

Portfolio is admissible if :

• It is self-financing so value changes are only due to market price fluctuations.

• The stochastic process f(t, ω) belongs to the space L̃1,2
φ (R) of all FH

t adapted processes.

A stochastic process f(t, ω) = f(t) belongs to the space L̃1,2
φ (R) if:

Eµ̃φ [
∫
R
f(t, ω)) � dB̃H(t)] = 0

Eµ̃φ [(
∫
R
f(t, ω) � dB̃H(t))2] = ||f ||2

L̃1,2
φ (R)

||f ||2
L̃1,2
φ (R)

= Eµ̃φ [(
∫
R
fdB̃Ht )2] = Eµ̃φ [(

∫
R
f � dB̃Ht )2] + Eµ̃φ [(

∫
R

∫
R
Dfφ(s, t)dsdt)2]

It’s worth noting that if f(t, ω) is deterministic.
||f ||2

L̃1,2
φ (R)

=
∫
R

∫
R
f(s)f(t)φ(s, t)dsdt

Arbitrage Portfolio

An admissible portfolio θ is called an arbitrage for this market (A(t), X(t)) for t ∈ [0, T ] if
Zθ(0) ≤ 0, Zθ(T ) ≤ 0 a.s and
µθ[(ω;Zθ(T, ω) > 0] > 0
We deduce that no arbitrage exists by taking expectations with respect to the risk neutral probability measure µ̃φ
Eµ̃φ [exp(−ρt)Zθ(t, ω)] = Zθ(0, ω)

5 Stock Price Modelling

5.1 Choice of Simulator for Fractional Brownian Motion

Davies and Harte method will be chosen since it performs well in the test and is easy to compute. A reason for this is that
the simulator doesn’t require storing past data unlike the Hosking and Cholesky methods and can perform the algorithms more
speedily. Other dissertations such as Tom Dieker [10] who have explored a wide range of simulators and approximate simulators
also comment on the pace and accuracy of this simulator.

5.2 Comparing Errors between Fractional Models and Geometric Brownian Motion Stock
Price Model

Now we aim to see if fractional models are better than the geometric Brownian motion. Geometric Brownian motion has
traditionally been used to model the stock price. If we find that fBm is better, not only should we consider the mean and
variance of natural logarithm of the price change (section 4.7) but also the Hurst value of the stock. In this experiment errors
at each day of a stock price model for the first 60 days are recorded and the norm (first,second and infinite) is computed. For
a stock price model a sample of a hundred norm errors is recorded and the mean is compared with other stock price models. I
accepted normality on the Kolmogorov Smirnov test with significance level 0.05 and for the t pair test accepted the alternative
hypothesis that models were different with significance level 0.05. Please see results in the appendix (15.1).

1. For 2007 only the infinite norms satisfied the normality condition. H=0.8 was the best model followed by H=0.7. However
the t pair test showed no distinction between the fractional models. Fractional H=0.5 proved to be a better model than
gBm.
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2. For 2008 only the infinite norms satisfied the normality condition. H=0.7 was the best model followed by H=0.5. However
the t pair test showed no distinction between these two models. Fractional H=0.5 proved to be a better model than gBm.

3. For 2009 only the infinite norms satisfied the normality condition. H=0.8 was the best model followed by H=0.5. However
the t pair test showed no distinction between these two models. Fractional H=0.5 proved to be a better model than gBm.

4. For 2010 only the infinite norms satisfied the normality condition. H=0.8 was the best model followed by H=0.7. However
the t pair test showed no distinction between these two models. There was not enough evidence to show that fractional
H=0.5 is a better model than gBm.

5. For 2011 only the infinite norms satisfied the normality condition. H=0.7 was the best model followed by H=0.5. However
the t pair test showed no distinction between the fractional models. Fractional H=0.5 proved to be a better model than
gBm.

6. For 2012 only the infinite norms for all models satisfy the normality condition. H=0.5 was the best model followed by
H=0.7. However the t pair test showed no distinction between the fractional models. Fractional H=0.5 proved to be a
better model than gBm.

Overall we see that fractional Brownian models perform better than geometric Brownian motion. Between the years 2007 and
2011 the assumption that H = 0.5 is incorrect as it leads to greater errors in the model. Throughout this period the stock
shown to have an H value of 0.7 or 0.8. This isn’t precise enough for a trader so he would be advised to experiment with the
different H values in that range to find the minimum error. Interestingly for 2012, when H = 0.5 is the optimum Hurst value
theoretically it shouldn’t matter if the fBm model or gBm are used as they are both the same. However the fractional Brownian
motion model performed better. This discrepancy will be discussed in section 12.

5.3 Predicting Future Values from Models based on Past Data

In order to reflect the real world of trading I compared future estimates from past data models in the short term (ie 11 days ) for
predicting the 12th day and long term ie (61 days) for predicting the 62nd day. With each model I carried out 100 simulations
and calculated a sample of errors. In the short term the geometric Brownian motion formula was better than any fractional
model created. However in the long term the results are considerably different. For both short and long term I compared
fractional at 0.5, 0.7, 0.8 with gBm. I accepted normality on the Kolmogorov Smirnov test with significance level 0.05 and for
the t pair test accepted the alternative hypothesis that models were different with significance level 0.05. Please see results in
the appendix (15.2).

Short Term Prediction Results

1. For 2007 gBm was best with error of 0.0170 compared to second best H=0.8 with error 0.0209. The results showed that
there wasn’t significant evidence at 0.05 significance level to show that there was difference between the fractional models

2. For 2008 gBm was the best with error of 0.0938 followed by H=0.8 with error 0.1332. The results showed that there wasn’t
significant evidence at 0.05 significance level to show that there was difference between all the models

3. For 2009 gBm was the best with error of 0.1022 followed by H=0.8 with error 0.1526. The results showed that there wasn’t
significant evidence at 0.05 significance level to show that there was difference between the fractional models

4. For 2010 gBm was the best with error of 0.0539 followed by H=0.5 with error 0.0659. The results showed that there wasn’t
significant evidence at 0.05 significance level to show that there was difference between all the models

5. For 2011 gBm was the best with error of 0.0468 followed by H=0.7 with error 0.0706. The results showed that there wasn’t
significant evidence at 0.05 significance level to show that there was difference between H=0.7 and third place H=0.8.

6. For 2012 gBm was the best with error of 0.0678 followed by H=0.7 with error 0.0876. The results showed that there wasn’t
significant evidence at 0.05 significance level to show that there was difference between the fractional models.

Long Term Prediction Results

1. For 2007 H=0.5 was the best with error 0.0082 and the other fractional models followed closely behind compared to gBm
0.0717. There was no evidence to show distinction between the fractional models.

2. For 2008 H=0.8 was the best with error 0.0559 compared to last place gBm 0.2149. According to the t test there wasn’t
significant evidence at 0.05 significance level to show that there was difference between the fractional models.

3. For 2009 H=0.5 was the best model followed by H=0.7. However the t pair test showed no distinction between these two
models. Fractional H proved to be a better model than gBm.
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4. For 2010 H=0.7 had the least error 0.0269 with gBm in last position with error .2154. The results showed that there
wasn’t significant evidence at 0.05 significance level to show that there was difference between H=0.5 and second place
H=0.7. However there is difference between H=0.5 and H=0.8.

5. For 2011 H=0.5 was a best model with error 0.0225 and gBm in last position with error .1013. The results showed that
there wasn’t significant evidence at 0.05 significance level to show that there was difference between the fractional models

6. For 2012 the fractional models were clearly better than gBm. H=0.7 was the best with error 0.0282 with others closely
following. Geometric Brownian motion in last position had an error of .1094. However according to the t test there wasn’t
sufficient evidence to say that there is any distinction between the fractional models.

Models based on long period of data such as 61 days performed better than the short term 11 days. In the long term the model
has received more information about economic conditions, so has increased confidence in the stock and therefore can produce
a better estimation of future values. A trader would be advised to use past data over a wide period but that would require a
significant amount of computation. For that reasons a fast simulator of fBm would be preferred.

6 Analysis of Discrepancy between GBM and Fractional Brownian Motion at
H=0.5

In this section we are looking for a reason why there is a difference between the errors of gBm model and the fractional Brownian
model at H = 0.5. Theoretically there should be no difference since they are the same model but the fractional version tends
to have better stock price predictions. The error could be caused by the simulator or due to how MATLAB computes random
numbers.
Let us firstly use Beran’s test statistic

TN (H) = AN (H)
BN (H)2 = 0.2680

P (TN > 0.2565) ∼ (1− 0.0570) = 0.9430
This implies that simulation generated by MATLAB program does fit a Brownian motion path.

However the Brownian motion simulator’s p statistic is not as well inside the acceptance region compared to the Davies and
Harte simulator with a p statistic of 0.9948.Therefore we can conclude that it’s better to use the fractional simulators to model
Brownian motion at H = 0.5 than the original stock price model. A possible explanation for this is that the simulator creates
a fractional Brownian motion that shares its characteristics with the covariance matrix. The gBm doesn’t enforce this property
but just relies on the quality of MATLAB’s random simulator.

7 Option Price Modelling

The method I used (supported by mathematicians Corrado and Su) [7] is to find the fraction of observation values outside of
the bid/ask spread on the first day of each week. The sigma value used to derive the theoretical price is the value that gives the
least error at H = 0.5 for the prior day’s observations and ensures the majority of theoretical prices are within the spread. After
noting the average deviation an alternative H value is used to see if the error has become even smaller. For this experiment
Option ’A’ weekly option price has been analysed starting from January 3rd 2013. In this next experiment I have recorded
the sigma value and Hurst parameter to 2 decimal places. Results support the hypothesis that H=0.5 isn’t the optimal value
to minimise the average deviation between midpoint of spread and theoretical price. In general optimum Hurst values ranged
between 0.36 to 0.47. In financial application for striving to get the theoretical price as close to observed prices as possible, the
option pricer needs to find a minimum Hurst value and sigma value for the least error for the prior day. These parameters will
be used to calculate the call price for the following day.

7.1 Finding the Stationary Points for Option A in the First Week 2013

Figure 4 shows the minimum average absolute error for different values of H and sigma. In order to computationally find this
value we must find the minimum element of the average absolute error matrix - array of values influenced by sigma and H.
Using the index of the minimum value and knowing the step size we find the H=0.47 and sigma = 0.215 (see appendix 14.4
on MATLAB code). Substituting these values into the next day’s prediction of the call option price we see that the average
deviation from the midpoint is 0.2695. This is a significant improvement compared to the original Black Scholes that estimates
in the prior day sigma=0.2094 for the minimum error and has an average deviation the next day of 0.2956. This builds the case
that financial derivative companies should be using the fractional Black Scholes model for determining the price of call options.

8 Conclusions and Future Work

For stock price and call option predictions it can be seen that for different H values the error has reduced. Fractional Brownian
Motion has been removed of arbitrage by the Wick product but the difficulty is to explain its economic significance. The
traditional geometric Brownian model is easier to understand as it ensures that the stock price is always positive and that there
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Figure 1: Comparing the deviations between prediction and true value for H = 0.5 and the Hurst value that gives minimum
error denoted as ”Minhurst”. The implied volatility is the sigma value that gives the minimum error for the prior day at
H = 0.5. Evidently the error is improved by choosing an alternative H value.

Figure 2: Graph showing the minimum H value and sigma value to ensure the prior day’s deviation is at its smallest.

are two parts - a random component and a deterministic part that sets the trend. However the advantage of the Wick product
needs to be considered as without it fBm models would contain arbitrage.

An idea to improve accuracy of predictions is to consider multiple fractional Brownian motion. Perhaps the random part
of the model as just a single component simplifies the model. It’s known that a stock price is not just influenced by one factor
but a multiple of factors such as the global economy, the success of a company and investors selling shares to liquify their profits
etc. Multiple fractional Brownian motion (MFM) is a continuous Gaussian process whose pointwise Holder exponent can be
prescribed and evolves with time t. For fBm the pointwise Holder exponent and Hurst value are equal and constant. The next
stage would be to make the Hurst value a function of time. Assuming that H is constant could be an over simplification since
evidently stock price behaviour changes in time. For example one moment oil may be the investment of the year because of the
growing need of the commodity but next moment there is volatility due to the uncertainty of a coming war in the Middle East.
For the next step we will of course have to show that these multiple fractional Brownian motion models are arbitrage free
before we can carry out the experiments. If the multiple fractional Brownian motion model can be proved to be more accurate,
there is no reason why we should stop there. In other work for improving the call price prediction there is the Kurtosis and
Skewness Adjusted Black Schole’s model. In the past the natural logarithm of stock price change is considered to be a normal
distribution, but in reality the tails are fatter which imply that extreme price movements are more likely, The model allows for
changing the kurtosis and the skewness to reflect better the motion of the stock price. Mathematicians such as Corrado and Su
[7] have shown that this model is effective. Although this model is still based on Brownian motion, it leads us to the question
as to whether the results would be even better when fractional Brownian motion was incorporated into the equation.
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9 Appendix

9.1 Graphs Comparing the Average of all the Models with the Observed Price

Here are the graphs for years 2007 to 2012 comparing the average model (blue line) with the observed prices (red line). The
first graph for each year is the best model.

2007
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2008
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2009
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2010
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2011
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2012
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9.2 Results from Comparing Errors between Stock Price Models

2007 Sample of 100 Norm Errors between Observed Price and Model

2008 Sample of 100 Norm Errors between Observed Price and Model
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2009 Sample of 100 Norm Errors between Observed Price and Model

2010 Sample of 100 Norm Errors between Observed Price and Model

2011 Sample of 100 Norm Errors between Observed Price and Model

2012 Sample of 100 Norm Errors between Observed Price and Model
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9.3 Results from Predicting Future Values from Short Term Models (10 days)

2007 Short Term Prediction

2008 Short Term Prediction
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2009 Short Term Prediction

2010 Short Term Prediction

2011 Short Term Prediction
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2012 Short Term Prediction

9.4 Results from Predicting Future Values from Long Term Models (60 days)

2007 Long Term Prediction
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2008 Long Term Prediction

2009 Long Term Prediction
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2010 Long Term Prediction

2011 Long Term Prediction
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2012 Long Term Prediction

9.5 MATLAB Code for Optimising Option Pricing
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9.6 Notation
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