

Semester 2 Examination

Further Mathematics : Vectors

Examination Session May 2012 Time Allowed 1 hour

INSTRUCTIONS TO STUDENTS

- Write your Student Number clearly on the Answer Booklet Provided
- 1 This exam is worth 5% of the overall marks for the course.
- 2 The time allowed for this exam is 1 hour.
- 3 This paper contains 9 questions.
- 4 Answer all questions.
- 5 The total number of marks for the exam is 50.
- 6 The marks for each question are indicated in square brackets.
- 7 Only approved calculators may be used.
- 8 No written material is allowed in the examination room.
- 9 No mobile phones are allowed in the examination room

Vectors

Unit vector $\hat{\mathbf{a}}$ in the direction of \mathbf{a}

 $\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}$, where $|\mathbf{a}|$ is the modulus (magnitude) of \mathbf{a} .

 \vec{a} and \overrightarrow{AB} are also used to denote vectors.

Scalar Product

 $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{b} \cos \theta$ where θ is the angle between \mathbf{a} and \mathbf{b} .

a.b = b.a

If $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$, then $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$, $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$, $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$, $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 = a_1^2 + a_2^2 + a_3^2$.

If both **a** and **b** are non-zero vectors then **a** is perpendicular to **b** if $\mathbf{a}.\mathbf{b} = 0$.

Vectors

Vector Product

 $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| \mathbf{b} | \sin \theta \mathbf{n}$, where θ is the angle between \mathbf{a} and \mathbf{b} , and \mathbf{n} is a unit vector perpendicular to both \mathbf{a} and \mathbf{b} .

$$\begin{aligned} \mathbf{a} \times \mathbf{b} &= -\mathbf{b} \times \mathbf{a} \\ \text{If } \mathbf{a} &= a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \text{ and } \mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k} \text{,} \\ \text{then} \quad \mathbf{i} \times \mathbf{i} &= \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0} \text{, } \mathbf{i} \times \mathbf{j} = \mathbf{k} \text{, } \mathbf{j} \times \mathbf{k} = \mathbf{i} \text{, } \mathbf{k} \times \mathbf{i} = \mathbf{j} \text{,} \\ \mathbf{a} \times \mathbf{b} &= (a_2 b_3 - a_3 b_2) \mathbf{i} + (a_3 b_1 - a_1 b_3) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k} \text{.} \end{aligned}$$

If both **a** and **b** are non-zero vectors then **a** is parallel to **b** if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.

Moments as vectors

The moment about O of force **F** acting at position **r** is $\mathbf{r} \times \mathbf{F}$.

Document1

A point is given by the position vector $\mathbf{p} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$.	
A line is given by the vector equation <i>l</i> : $\mathbf{r} = 3\mathbf{i} + \mathbf{j} - 4\mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} - \mathbf{k})$.	
A plane is given by the vector equation Π : \mathbf{r} .($4\mathbf{i} - \mathbf{j} + 3\mathbf{k}$) = 6.	
1) Find the Contesion equation of the plane	[2]
1) Find the Cartesian equation of the plane.	[3]
2) Find the Cartesian equation of the line.	[3]
3) Find the distance of the point from the plane, giving your answer in	
exact form.	[5]
4) Find the point of intersection of the line and the plane.	[6]
5) Find the angle of intersection of the line and the plane, giving y	/our
answer in degrees to 3 significant figures.	[3]
6) Find the equation of the plane containing the point and the line	,
giving your answer in the form $\mathbf{r.n} = \mathbf{D}$.	[8]
7) Find the distance of the point from the line, giving your answer	in
exact form.	[7]
8) Consider any 4 distinct points, A, B, C and D.	
Let $AB = \mathbf{a}$, $BC = \mathbf{b}$, $CD = \mathbf{c}$ and $DA = \mathbf{d}$.	
i) Find $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}$.	
Let W be the midpoint of AB, X be the midpoint of BC, Y be the	
midpoint of CD and Z be the midpoint of DA.	
ii) Find WX and ZY in terms of a and b .	
iii) Find XY and WZ in terms of b and c .	

iv) What can you say about WXYZ?

[6]

- 9) Consider the points $A = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$, $B = \mathbf{i} 2\mathbf{j} + \mathbf{k}$, $C = 4\mathbf{i} 3\mathbf{j} \mathbf{k}$ and $D = -2\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$.
- i) Find the area of the triangle ABC
- ii) Find the volume of the tetrahedron ABCD. [9]